zoukankan      html  css  js  c++  java
  • HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

    Description
    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
    The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
    You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
    Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
    Help us calculate the shortest path from node 1 to node N.
     
    Input
    The first line has a number T (T <= 20) , indicating the number of test cases.
    For each test case, first line has three numbers N, M (0 <= N, M <= 105) and C(1 <= C <= 103), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
    The second line has N numbers li (1 <= li <= N), which is the layer of ith node belong to.
    Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 104), which means there is an extra edge, connecting a pair of node u and v, with cost w.
     
    Output
    For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
    If there are no solutions, output -1.
     
    Sample Input
    2
    3 3 3
    1 3 2
    1 2 1
    2 3 1
    1 3 3
     
    3 3 3
    1 3 2
    1 2 2
    2 3 2
    1 3 4
    Sample Output
    Case #1: 2
    Case #2: 3
     
    题意:有n个点,m条边,有一些边连接1~n中的某些点,费用为w,另外,每个人拥有1~n中的一个点,第i个人的点与第i+1个人的点相互连通,费用都是C,求最短路。
    分析:对于1~n中的边,不用管,直接连就行了。对于人掌管的点,需要将每个人的点拆成2个点,这样就增加了2*n个点,对于第i个人,他拥有u这个点,就将i和n+2*u-1连一条边,n+2*u和i连一条边,费用为0.然后第i个人的点和第i+1个人的点,将他们的首尾分别相连,费用都是C。
    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<vector>
    #include<queue>
    using namespace std;
    /*
     * 使用优先队列优化Dijkstra算法
     * 复杂度O(ElogE)
     *
     */
    const int MAXN = 100000+10;
    const int INF = 0x3f3f3f3f;
    
    struct node{
        int v,c;
        node(int _v=0,int _c=0):v(_v),c(_c){}
        bool operator <(const node &rhs) const{
            return c>rhs.c;
        }
    };
    
    struct Edge{
        int to,cost;
        int next;
    };
    Edge edge[MAXN*2];
    int head[MAXN],tot;
    bool vis[MAXN];
    int dis[MAXN];
    
    void Dijkstra(int n,int start)
    {
        memset(vis,false,sizeof(vis));
        for(int i=1;i<=n;i++) dis[i]=INF;
        priority_queue<node>q;
        while(!q.empty()) q.pop();
        dis[start]=0;
        q.push(node(start,0));
        node next;
        while(!q.empty()){
            next=q.top();
            q.pop();
            int u=next.v;
            if(vis[u]) continue;
            vis[u]=true;
            for(int i=head[u];i!=-1;i=edge[i].next){
                int v=edge[i].to;
                int cost=edge[i].cost;
                if(!vis[v]&&dis[v]>dis[u]+cost){
                    dis[v]=dis[u]+cost;
                    q.push(node(v,dis[v]));
                }
            }
        }
    }
    
    void init()
    {
        tot=0;
        memset(head,-1,sizeof(head));
    }
    
    void addedge(int u,int v,int w)
    {
        edge[tot].to=v;
        edge[tot].cost=w;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    
    int main()
    {
        int T;
        int n,m,c;
        scanf("%d",&T);
        int iCase=0;
        while(T--){
            scanf("%d%d%d",&n,&m,&c);
            init();
            int u,v,w;
            for(int i=1;i<=n;i++){
                scanf("%d",&u);
                addedge(i,n+2*u-1,0);
                addedge(n+2*u,i,0);
            }
            for(int i=1;i<n;i++){
                addedge(n+2*i-1,n+2*(i+1),c);
                addedge(n+2*(i+1)-1,n+2*i,c);
            }
            while(m--){
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            Dijkstra(3*n,1);
            iCase++;
            if(dis[n]==INF) dis[n]=-1;
            printf("Case #%d: %d
    ",iCase,dis[n]);
        }
    
        return 0;
    }
  • 相关阅读:
    sql存储过程简单教程
    深入揭示Web 2.0核心技术——混搭
    Struts 2创始人Patrick Lightbody看《精通Struts 2:Web 2.0开发实战 》
    深入全面阐释Struts 2的方方面面
    设计原本如此简单
    掌握ASP.NET技术之捷径
    Struts 2创始人Patrick Lightbody作序推荐
    Struts 2权威著作
    Amazon超级畅销书之《C#与.NET 3.5高级程序设计(第4版)》
    Web开发领域最热门的话题之混搭
  • 原文地址:https://www.cnblogs.com/wangdongkai/p/5627594.html
Copyright © 2011-2022 走看看