zoukankan      html  css  js  c++  java
  • HDU 5889 Barricade (bfs + 最小割)

    Barricade

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


    Description
    The empire is under attack again. The general of empire is planning to defend his castle. The land can be seen as N towns and M roads, and each road has the same length and connects two towns. The town numbered 1 is where general's castle is located, and the town numbered N is where the enemies are staying. The general supposes that the enemies would choose a shortest path. He knows his army is not ready to fight and he needs more time. Consequently he decides to put some barricades on some roads to slow down his enemies. Now, he asks you to find a way to set these barricades to make sure the enemies would meet at least one of them. Moreover, the barricade on the i-th road requires wi units of wood. Because of lacking resources, you need to use as less wood as possible.
     
    Input
    The first line of input contains an integer t, then t test cases follow.
    For each test case, in the first line there are two integers N(N1000) and M(M10000).
    The i-the line of the next M lines describes the i-th edge with three integers u,v and w where 0w1000 denoting an edge between u and v of barricade cost w.
     
    Output
    For each test cases, output the minimum wood cost.
     
    Sample Input
    1
    4 4
    1 2 1
    2 4 2
    3 1 3
    4 3 4
     
    Sample Output
    4
    /*
     * HDU 5889 Barricade 
     * 求堵住从1到n的最短路的最小花费
     * 
     * bfs + 最小割
     * 首先用Dij或者bfs求出dis数组,接着从终点出发,倒着bfs找出所有最短路径重新建图
     * 然后就是一个裸的最小割了,就等于最大流
     */
    
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <queue>
    #include <map>
    #include <vector>
    using namespace std;
    
    struct NetFlow
    {
        const static int MAXN = 5000+10;
        const static int MAXE = 500000;
        const static long long INF = 1e18;
        struct Edge
        {
            int from,to,next,cap,flow;
            Edge(){}
            Edge(int u,int v,int c,int f,int nxt):from(u),to(v),cap(c),flow(f),next(nxt) {}
        }edge[MAXE];
        int head[MAXN],tol,N;
        int cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN];
        void init(int _n)
        {
            N=_n,tol=0; memset(head,-1,sizeof(head));
        }
        void link(int u,int v,int cap)//s->t,cap
        {
            edge[tol]=Edge(u,v,cap,0,head[u]);head[u]=tol++;
            edge[tol]=Edge(v,u,0,0,head[v]);head[v]=tol++;
        }
        long long ISAP(int S,int T)
        {//S -> T
            long long maxflow=0,aug=INF;
            int flag=false,u,v;
            for (int i=0;i<N;++i) cur[i]=head[i],gap[i]=dis[i]=0;
            for (gap[S]=N,u=pre[S]=S;dis[S]<N;flag=false)
            {
                for (int &it=cur[u];it!=-1;it=edge[it].next)
                {
                    if (edge[it].cap>edge[it].flow&&dis[u]==dis[v=edge[it].to]+1)
                    {
                        aug=min(aug,(long long)(edge[it].cap-edge[it].flow));
                        pre[v]=u,u=v; flag=true;
                        if (u==T)
                        {
                            for(maxflow+=aug;u!=S;)
                            {
                                edge[cur[u=pre[u]]].flow+=aug;
                                edge[cur[u]^1].flow-=aug;
                            }
                            aug=INF;
                        }
                        break;
                    }
                }
                if(flag) continue;
                int mx=N;
                for(int it=head[u];it!=-1;it=edge[it].next)
                {
                    if(edge[it].cap>edge[it].flow&&dis[edge[it].to]<mx)
                    {
                        mx=dis[edge[it].to]; cur[u]=it;
                    }
                }
                if((--gap[dis[u]])==0) break;
                ++gap[dis[u]=mx+1]; u=pre[u];
            }
            return maxflow;
        }
    }NF;
    const int MAXN = 5000+10;
    const int MAXE = 200000;
    const int INF = 1e9;
    struct node{
        int v,c;
        node(int _v=0,int _c=0):v(_v),c(_c){}
        bool operator <(const node &rhs) const{
            return c>rhs.c;
        }
    };
    struct Ed
    {
        int u,v,w;
    }e;
    vector<Ed>p;
    struct Edge{
        int to,cost;
        int w;
        int next;
    };
    Edge edge[MAXE];
    int head[MAXN],tot;
    bool vis[MAXN];
    int dis[MAXN];
    
    void Dijkstra(int n,int start)
    {
        memset(vis,false,sizeof(vis));
        for(int i=1;i<=n;i++) dis[i]=INF;
        priority_queue<node>q;
        while(!q.empty()) q.pop();
        dis[start]=0;
        q.push(node(start,0));
        node next;
        while(!q.empty()){
            next=q.top();
            q.pop();
            int u=next.v;
            if(vis[u]) continue;
            vis[u]=true;
            for(int i=head[u];i!=-1;i=edge[i].next){
                int v=edge[i].to;
                int cost=edge[i].cost;
                if(!vis[v]&&dis[v]>dis[u]+cost){
                    dis[v]=dis[u]+cost;
                    q.push(node(v,dis[v]));
                }
            }
        }
    }
    
    void init()
    {
        tot=0;
        memset(head,-1,sizeof(head));
    }
    
    void addedge(int u,int v,int w,int ww)
    {
        edge[tot].to=v;
        edge[tot].cost=w;
        edge[tot].w=ww;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    void bfs(int T)
    {
        memset(vis,0,sizeof(vis));
        queue<int>Q;
        Q.push(T);
        vis[T]=true;
        while(!Q.empty())
        {
            int u=Q.front();
            Q.pop();
            for(int i=head[u];i!=-1;i=edge[i].next)
            {
                int ds=edge[i].cost;
                int v=edge[i].to;
                if(ds+dis[v]==dis[u])
                {
                    e.u=v,e.v=u,e.w=edge[i].w;
                    p.push_back(e);
                    if(!vis[v])
                    {
                        vis[v]=1;
                        Q.push(v);
                    }
                }
            }
        }
    }
    
    int main()
    {
        int T;
        int n,m,u,v,w;
        //freopen("in.txt","r",stdin);
        scanf("%d",&T);
        while(T--)
        {
            init();
            p.clear();
            scanf("%d%d",&n,&m);
            while(m--)
            {
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,1,w);
                addedge(v,u,1,w);
            }
            Dijkstra(n,1);
            bfs(n);
            int sz=p.size();
            NF.init(n+1);
            for(int i=0;i<sz;i++)
            {
                u=p[i].u;
                v=p[i].v;
                w=p[i].w;
                NF.link(u,v,w);
            }
            long long ans=NF.ISAP(1,n);
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    Swift DispatchQueue
    Function types cannot have argument labels 错误解决方案
    CocoaPods 使用详解
    鸡兔同笼:笼子里一共有鸡和兔子35只,一共有94条退, 笼子里一共有鸡和兔子共多少只
    一次酒店宴席安排宾客就座吃饭,5人一桌剩4人, 7人一桌剩6人,9人一桌剩8人,11人一桌正好。 问宴席共最少有多少人
    一次酒店宴席安排宾客就座吃饭,5人一桌剩4人, 7人一桌剩6人,9人一桌剩8人,11人一桌正好。 问宴席共最少有多少人
    求1到100之间的素数(能被1和他本身整除的数)
    求1到100之间的素数(能被1和他本身整除的数)
    给你一个整型数组如{1,3,4,7,2,1,1,5,2}, * 打印出现次数最多的那个数,如果最多的次数相同,则打印数字大的那个数。
    给你一个整型数组如{1,3,4,7,2,1,1,5,2}, * 打印出现次数最多的那个数,如果最多的次数相同,则打印数字大的那个数。
  • 原文地址:https://www.cnblogs.com/wangdongkai/p/5880112.html
Copyright © 2011-2022 走看看