zoukankan      html  css  js  c++  java
  • What is a TensorFlow Session?

    Sep 26, 2016

    I’ve seen a lot of confusion over the rules of tf.Graph and tf.Session in TensorFlow. It’s simple:

    • A graph defines the computation. It doesn’t compute anything, it doesn’t hold any values, it just defines the operations that you specified in your code.
    • A session allows to execute graphs or part of graphs. It allocates resources (on one or more machines) for that and holds the actual values of intermediate results and variables.

    Let’s look at an example.

    Defining the Graph

    We define a graph with a variable and three operations: variable always returns the current value of our variable. initialize assigns the initial value of 42 to that variable. assign assigns the new value of 13 to that variable.

    graph = tf.Graph()
    with graph.as_default():
        variable = tf.Variable(42, name='foo')
        initialize = tf.initialize_all_variables()
        assign = variable.assign(13)
    

    On a side note: TensorFlow creates a default graph for you, so we don’t need the first two lines of the code above. The default graph is also what the sessions in the next section use when not manually specifying a graph.

    Running Computations in a Session

    To run any of the three defined operations, we need to create a session for that graph. The session will also allocate memory to store the current value of the variable.

    with tf.Session(graph=graph) as sess:
      sess.run(initialize)
      sess.run(assign)
      print(sess.run(variable))
    # Output: 13
    

    As you can see, the value of our variable is only valid within one session. If we try to query the value afterwards in a second session, TensorFlow will raise an error because the variable is not initialized there.

    with tf.Session(graph=graph) as sess:
      print(sess.run(variable))
    # Error: Attempting to use uninitialized value foo
    

    Of course, we can use the graph in more than one session, we just have to initialize the variables again. The values in the new session will be completely independent from the first one:

    with tf.Session(graph=graph) as sess:
      sess.run(initialize)
      print(sess.run(variable))
    # Output: 42
    

    Hopefully this short workthrough helped you to better understand tf.Session. Feel free to ask questions in the comments.

    From:http://danijar.com/what-is-a-tensorflow-session/

  • 相关阅读:
    Parse Notification for IOS
    微信回调:Activity 调用 finish()之后,该acitivity的实例并不为空
    Android Studio 使用微博SDK Demo的问题总结
    Android Activity切换动画
    分享那些坑
    TextColor java 代码
    奇怪的Bug: 点击事件穿透应用,激活桌面的另一个应用
    FragmentStatePagerAdapter VS FragmentPagerAdatper
    android:fillViewport="true"
    用两种方式获取Bitmap的不同结果
  • 原文地址:https://www.cnblogs.com/wangduo/p/6995127.html
Copyright © 2011-2022 走看看