zoukankan      html  css  js  c++  java
  • 研讨|互为逆否命题的两个命题的真假证明

    前言

    近日,有博友问,如何证明互为逆否命题的两个命题的真假性,思索后加以整理,和各位探讨。

    回答学生

    如果有学生提问,我们仅仅需要举例,让学生感受一下,互为逆否命题的两个命题是同真同假的,没必要给他们说严格证明的方法;因为我们学习常用逻辑用语时,仅仅是了解了逻辑的初步知识,目的不是研究逻辑,而是用逻辑用语来刻画、表达数学素材,让其表达形式更简洁、精炼。

    引例1,原命题:“若(x^{2}-3x+2=0),则 (x=1)”,为假命题,

    其逆否命题是:“若(x eq 1),则(x^{2}-3x+2 eq 0)”,也为假命题;

    引例2,原命题:“若(x=1),则 (x^{2}-3x+2=0) ”,为真命题,

    其逆否命题是:“若(x^{2}-3x+2 eq 0),则(x eq 1)”,也为真命题;

    教师研讨

    但是,同样的问题,如果是教师之间的研讨,那就需要首先将问题高度抽象化,然后用数学语言加以严格证明。

    同样,为了保证证明的严格性和准确性,我们将证明的命题形式限定为“若(p),则(q)”的假言命题类型[高中阶段碰到的命题形式不见得都是假言命题类型];

    证明:为了表述方便,我们先约定,用符号(p(x))表示元素(x)具有属性(p),或者满足属性(p),用集合(A)表示所有具有属性(p)的元素构成的集合,

    已知原命题为:“若(p),则(q)”,为真命题;则其逆否命题为:“若( eg q),则( eg q)”,我们欲证明其亦为真命题;

    (A={xmid p(x))成立(})(B={xmid q(x))成立(}),全集为(U)

    由于原命题为真命题,则(Asubseteq B)必然成立;

    又由于 ( eg q) 对应的集合为 (C_{U}B)( eg p) 对应的集合为 (C_{U}A)

    则由 (Asubseteq B) 可知, (C_{U}Bsubseteq C_{U}A) 必然成立,

    故“若( eg q),则( eg q)” 亦为真命题;

    同理,可证明原命题若为假命题,其逆否命题也为假命题;

    综上所述,互为逆否命题的两个命题是同真同假的.

  • 相关阅读:
    HDU 4396
    Vijos1603 迷宫
    BZOJ1087 [SCOI2005] 互不侵犯King
    BZOJ2208 [JSOI2010] 连通数
    BZOJ1051 [HAOI2006] 受欢迎的牛
    BZOJ2751 [HAOI2012] 容易题(easy)
    BZOJ1015 [JSOI2008] 星球大战starwar
    BZOJ1012 [JSOI2008] 最大数maxnumber
    BZOJ1050 [HAOI2006] 旅行comf
    BZOJ2761 [JLOI2011] 不重复数字
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/14055978.html
Copyright © 2011-2022 走看看