zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    
    int main()
    {
        int a[maxn];
        int dp[maxn];
        int s[maxn];
        
        int n;
        bool flag = false;
        scanf("%d",&n);
        for ( int i = 0; i < n; i++ )
        {
            scanf("%d",&a[i]);
            if ( !flag && ( a[i] >= 0 ) )
            {
                flag = true;
            }
        }
        
        if ( !flag )
        {
            printf("0 %d %d",a[0],a[n-1]);
        }
        else
        {
            dp[0] = a[0];
            s[0] = 0;
            for ( int i = 1; i < n; i++ )
            {
                if ( dp[i - 1] + a[i] >= a[i] )
                {
                    dp[i] = dp[i - 1] + a[i];
                    s[i] = s[i - 1];
                }
                else
                {
                    dp[i] = a[i];
                    s[i] = i;
                }
            }
            
            int k = -1;
            int max = -1;
            for ( int i = 0; i < n; i++)
            {
                if ( dp[i] > max)
                {
                    max = dp[i];
                    k = i;
                }
            }
            
            printf("%d %d %d",max,a[s[k]],a[k]);
        }
        return 0;
    }
  • 相关阅读:
    软件构造 第七章第三节 断言和防御性编程
    软件构造 第七章第二节 错误与异常处理
    软件构造 第七章第一节 健壮性和正确性的区别
    软件构造 第六章第三节 面向可维护的构造技术
    软件构造 第六章第二节 可维护的设计模式
    欧拉函数代码实现及扩展--快速矩阵幂
    编译原理
    算法设计与分析总结
    人工智能简答总结
    感想
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/11688678.html
Copyright © 2011-2022 走看看