zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    
    int main()
    {
        int a[maxn];
        int dp[maxn];
        int s[maxn];
        
        int n;
        bool flag = false;
        scanf("%d",&n);
        for ( int i = 0; i < n; i++ )
        {
            scanf("%d",&a[i]);
            if ( !flag && ( a[i] >= 0 ) )
            {
                flag = true;
            }
        }
        
        if ( !flag )
        {
            printf("0 %d %d",a[0],a[n-1]);
        }
        else
        {
            dp[0] = a[0];
            s[0] = 0;
            for ( int i = 1; i < n; i++ )
            {
                if ( dp[i - 1] + a[i] >= a[i] )
                {
                    dp[i] = dp[i - 1] + a[i];
                    s[i] = s[i - 1];
                }
                else
                {
                    dp[i] = a[i];
                    s[i] = i;
                }
            }
            
            int k = -1;
            int max = -1;
            for ( int i = 0; i < n; i++)
            {
                if ( dp[i] > max)
                {
                    max = dp[i];
                    k = i;
                }
            }
            
            printf("%d %d %d",max,a[s[k]],a[k]);
        }
        return 0;
    }
  • 相关阅读:
    通过wireshark抓包来讲解HTTP中Connection: keep-alive头部的作用
    spring cloud连载第三篇补充之Zuul
    Redis管理各类型存储数据命令
    Redis管理key命令
    Redis命令
    Redis数据类型
    Redis配置文件
    Redis安装
    Redis简介
    SpringBoot项目报错Cannot determine embedded database driver class for database type NONE
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/11688678.html
Copyright © 2011-2022 走看看