zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    
    int main()
    {
        int a[maxn];
        int dp[maxn];
        int s[maxn];
        
        int n;
        bool flag = false;
        scanf("%d",&n);
        for ( int i = 0; i < n; i++ )
        {
            scanf("%d",&a[i]);
            if ( !flag && ( a[i] >= 0 ) )
            {
                flag = true;
            }
        }
        
        if ( !flag )
        {
            printf("0 %d %d",a[0],a[n-1]);
        }
        else
        {
            dp[0] = a[0];
            s[0] = 0;
            for ( int i = 1; i < n; i++ )
            {
                if ( dp[i - 1] + a[i] >= a[i] )
                {
                    dp[i] = dp[i - 1] + a[i];
                    s[i] = s[i - 1];
                }
                else
                {
                    dp[i] = a[i];
                    s[i] = i;
                }
            }
            
            int k = -1;
            int max = -1;
            for ( int i = 0; i < n; i++)
            {
                if ( dp[i] > max)
                {
                    max = dp[i];
                    k = i;
                }
            }
            
            printf("%d %d %d",max,a[s[k]],a[k]);
        }
        return 0;
    }
  • 相关阅读:
    关于Blog的思考
    程序员应知——简单就是美
    关于知识分享和微软TechEd Roadshow
    在网络上营销你自己——兼《口碑》书评
    《与孩子一起学编程》书评
    两个要素:人和思考——《软件人才管理的艺术》书评
    程序员应知——也说重构
    《精通Android 2》书评
    oracle利用正则表达式提取字符串中的数字
    oracle 身份证校验函数
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/11688678.html
Copyright © 2011-2022 走看看