zoukankan      html  css  js  c++  java
  • C/C++求一个矩形不规则切片的切片区域坐标

    5 5 5 5 2
    5 5 5 5 2
    5 5 5 5 2
    3 3 3 3  

    如上图区所示,长 23 ,宽18,每个格子长宽均为 5,那么第一个小方框的的区域坐标为(0,0)(5,0)(0,5)(5,5)

    第一行最后一个小方块的坐标为(20,0)(22,0)(20,5)(22,5)

    第一列最后一个小方块的坐标为(0,15)(5,15)(0,18)(5,18)

    最右小角的小方块坐标为(20,15)(22,15)(20,18)(22,18)

    已知给出该大方块的 min_x = 0, min_y = 0, max_x = 22, max_y = 18, size = 5 ,数值都是以 double 类型给出。

    算出每个小方框的坐标

    代码如下:

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    
    struct Point
    {
        double x;
        double y;
    };
    
    void print(Point *point);
    
    int main()
    {
        double min_x = 0;
        double min_y = 0;
        double max_x = 22;
        double max_y = 18;
    
        double size = 5;
    
        Point point[4];
    
        for (double i = min_y; i < max_y; i = min(max_y, i+size))
        {
            for (double j = min_x; j < max_x; j = min(max_x, j+size))
            {
                point[0].x = j;
                point[0].y = i;
    
                point[1].x = min(max_x, j+size);
                point[1].y = i;
    
                point[2].x = j;
                point[2].y = min(max_y, i+size);
    
                point[3].x = min(max_x, j+size);
                point[3].y = min(max_y, i+size);
    
                print(point);
            }
        }
    
        return 0;
    }
    
    void print(Point *point)
    {
        for (int i = 0; i < 4; i++)
        {
            printf("%f %f ", point[i].x, point[i].y);
        }
        printf("
    ");
    }

    运行结果:

    0.000000 0.000000 5.000000 0.000000 0.000000 5.000000 5.000000 5.000000
    5.000000 0.000000 10.000000 0.000000 5.000000 5.000000 10.000000 5.000000
    10.000000 0.000000 15.000000 0.000000 10.000000 5.000000 15.000000 5.000000
    15.000000 0.000000 20.000000 0.000000 15.000000 5.000000 20.000000 5.000000
    20.000000 0.000000 22.000000 0.000000 20.000000 5.000000 22.000000 5.000000
    0.000000 5.000000 5.000000 5.000000 0.000000 10.000000 5.000000 10.000000
    5.000000 5.000000 10.000000 5.000000 5.000000 10.000000 10.000000 10.000000
    10.000000 5.000000 15.000000 5.000000 10.000000 10.000000 15.000000 10.000000
    15.000000 5.000000 20.000000 5.000000 15.000000 10.000000 20.000000 10.000000
    20.000000 5.000000 22.000000 5.000000 20.000000 10.000000 22.000000 10.000000
    0.000000 10.000000 5.000000 10.000000 0.000000 15.000000 5.000000 15.000000
    5.000000 10.000000 10.000000 10.000000 5.000000 15.000000 10.000000 15.000000
    10.000000 10.000000 15.000000 10.000000 10.000000 15.000000 15.000000 15.000000
    15.000000 10.000000 20.000000 10.000000 15.000000 15.000000 20.000000 15.000000
    20.000000 10.000000 22.000000 10.000000 20.000000 15.000000 22.000000 15.000000
    0.000000 15.000000 5.000000 15.000000 0.000000 18.000000 5.000000 18.000000
    5.000000 15.000000 10.000000 15.000000 5.000000 18.000000 10.000000 18.000000
    10.000000 15.000000 15.000000 15.000000 10.000000 18.000000 15.000000 18.000000
    15.000000 15.000000 20.000000 15.000000 15.000000 18.000000 20.000000 18.000000
    20.000000 15.000000 22.000000 15.000000 20.000000 18.000000 22.000000 18.000000

  • 相关阅读:
    Hadoop的多节点集群详细启动步骤(3或5节点)
    Hive的单节点集群详细启动步骤
    HDU-1039-Easier Done Than Said?(Java &amp;&amp; 没用正則表達式是我的遗憾.....)
    Linux下套接字具体解释(三)----几种套接字I/O模型
    C++晋升之std中vector的实现原理(标准模板动态库中矢量的实现原理)
    POJ 1781 In Danger Joseph环 位运算解法
    sublime搜索和替换--正则
    quarze的工作原理
    CF437D(The Child and Zoo)最小生成树
    HDU2504 又见GCD
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/13019611.html
Copyright © 2011-2022 走看看