zoukankan      html  css  js  c++  java
  • 1063. Set Similarity (25)

    Given two sets of integers, the similarity of the sets is defined to be Nc/Nt*100%, where Nc is the number of distinct common numbers shared by the two sets, and Nt is the total number of distinct numbers in the two sets. Your job is to calculate the similarity of any given pair of sets.

    Input Specification:

    Each input file contains one test case. Each case first gives a positive integer N (<=50) which is the total number of sets. Then N lines follow, each gives a set with a positive M (<=104) and followed by M integers in the range [0, 109]. After the input of sets, a positive integer K (<=2000) is given, followed by K lines of queries. Each query gives a pair of set numbers (the sets are numbered from 1 to N). All the numbers in a line are separated by a space.

    Output Specification:

    For each query, print in one line the similarity of the sets, in the percentage form accurate up to 1 decimal place.

    Sample Input:

    3
    3 99 87 101
    4 87 101 5 87
    7 99 101 18 5 135 18 99
    2
    1 2
    1 3
    

    Sample Output:

    50.0%
    33.3%
    #include<cstdio>
    #include<set>
    using namespace std;
    set<int> st[51];
    void compre(int x,int y){
        int totalNum = st[y].size(),sameNum = 0;
        for(set<int>::iterator it = st[x].begin(); it != st[x].end(); it++){
            if(st[y].find(*it) != st[y].end()) sameNum++;
            else totalNum++;
        }
        printf("%.1f%%
    ",sameNum*100.0/totalNum);
    }
    
    
    int main(){
        int n,m,v,k,st1,st2;
        scanf("%d",&n);
        for(int i = 1; i <= n; i++){
            scanf("%d",&m);
            for(int j = 0 ; j < m; j++){
                scanf("%d",&v);
                st[i].insert(v);
            }
        }
        scanf("%d",&k);
        for(int i = 0; i < k; i++){
            scanf("%d%d",&st1,&st2);
            compre(st1,st2);
        }
        return 0;
    }
  • 相关阅读:
    POJ 2253 Frogger
    POJ 2387
    codevs3981动态最大子段和(线段树)
    P3398仓鼠(LCA)
    codevs1036商务旅行(LCA)
    codevs3728联合权值(LCA)
    P3390矩阵快速幂
    codevs1574广义斐波那契数列
    POJ3070Fibonacci
    P3379最近公共祖先(LCA)
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/8916645.html
Copyright © 2011-2022 走看看