zoukankan      html  css  js  c++  java
  • python并开发编程之协程

    一 引出协成

    并发的本质是:切换+保存状态    

    CPU在运行行一个任务时,会在两种情况下切走去执行其他任务,一是该任务发生了阻塞,二是运行该任务的时间过长

    yeild可以保存状态,yeild状态保存与操作系统很像

    send可以把一个函数的结果传给另外一个函数,从而实现单线程内程序之间的切换

    #串行执行
    import time
    def consumer(res):
        '''任务1:接收数据,处理数据'''
        pass
    
    def producer():
        '''任务2:生产数据'''
        res=[]
        for i in range(10000000):
            res.append(i)
        return res
    
    start=time.time()
    #串行执行
    res=producer()
    consumer(res)
    stop=time.time()
    print(stop-start) #1.5536692142486572
    
    
    
    #基于yield并发执行
    import time
    def consumer():
        '''任务1:接收数据,处理数据'''
        while True:
            x=yield
    
    def producer():
        '''任务2:生产数据'''
        g=consumer()
        next(g)
        for i in range(10000000):
            g.send(i)
    
    start=time.time()
    #基于yield保存状态,实现两个任务直接来回切换,即并发的效果
    #PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
    producer()
    
    stop=time.time()
    print(stop-start) #2.0272178649902344
    单纯地切换反而会降低运行效率
    import time
    def consumer():
        '''任务1:接收数据,处理数据'''
        while True:
            x=yield
    
    def producer():
        '''任务2:生产数据'''
        g=consumer()
        next(g)
        for i in range(10000000):
            g.send(i)
            time.sleep(2)
    
    start=time.time()
    producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行
    
    stop=time.time()
    print(stop-start)
    yield并不能实现遇到io切换

    总结:

        1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来(重新运行时,可以基于暂停的位置继续)

        2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

    二  协程介绍

    协成:单线程下的并发,简称微线程,协成是一种用户态轻量级的线程,即协成是由用户程序自己控制的

    1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
    2. 单程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

    对比操作系统控制线程的切换,用户在单线程内控制协程的切换

    优点如下:

    1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
    2. 单线程内就可以实现并发的效果,最大限度地利用cpu

    缺点如下:

    1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
    2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

    总结协程特点:

    1. 必须在只有一个单线程里实现并发
    2. 修改共享数据不需加锁
    3. 用户程序里自己保存多个控制流的上下文栈
    4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

    三 Greenlet

    安装 pip3 install greenlet
    from greenlet import greenlet
    
    def eat(name):
        print('%s eat 1' %name)
        g2.switch('egon')
        print('%s eat 2' %name)
        g2.switch()
    def play(name):
        print('%s play 1' %name)
        g1.switch()
        print('%s play 2' %name)
    
    g1=greenlet(eat)
    g2=greenlet(play)
    
    g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
    View Code

    单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

    #顺序执行
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
    
    start=time.time()
    f1()
    f2()
    stop=time.time()
    print('run time is %s' %(stop-start)) #10.985628366470337
    
    #切换
    from greenlet import greenlet
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
            g2.switch()
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
            g1.switch()
    
    start=time.time()
    g1=greenlet(f1)
    g2=greenlet(f2)
    g1.switch()
    stop=time.time()
    print('run time is %s' %(stop-start)) # 52.763017892837524
    View Code

    四 Gevent介绍

    安装pip3 install gevent

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    #用法
    g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
    
    g2=gevent.spawn(func2)
    
    g1.join() #等待g1结束
    
    g2.join() #等待g2结束
    
    #或者上述两步合作一步:gevent.joinall([g1,g2])
    
    g1.value#拿到func1的返回值

    遇到IO阻塞时会自动切换任务

    import gevent
    def eat(name):
        print('%s eat 1' %name)
        gevent.sleep(2)
        print('%s eat 2' %name)
    
    def play(name):
        print('%s play 1' %name)
        gevent.sleep(1)
        print('%s play 2' %name)
    
    
    g1=gevent.spawn(eat,'egon')
    g2=gevent.spawn(play,name='egon')
    g1.join()
    g2.join()
    #或者gevent.joinall([g1,g2])
    print('')
    View Code

    从而引出要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

    from gevent import monkey;monkey.patch_all()
    import gevent,time
    def eat():
        print('eat h111ing')
        time.sleep(2)
        print('eat h222ing')
    
    def play():
        print('play 1')
        time.sleep(1)
        print('play 2')
    g1=gevent.spawn(eat)
    g2=gevent.spawn(play)
    gevent.joinall([g1,g2])
    print('')
    View Code      

    五 Gevent之同步与异步

    from gevent import spawn,joinall,monkey;monkey.patch_all()
    
    import time
    def task(pid):
        """
        Some non-deterministic task
        """
        time.sleep(0.5)
        print('Task %s done' % pid)
    
    
    def synchronous():
        for i in range(10):
            task(i)
    
    def asynchronous():
        g_l=[spawn(task,i) for i in range(10)]
        joinall(g_l)
    
    if __name__ == '__main__':
        print('Synchronous:')
        synchronous()
    
        print('Asynchronous:')
        asynchronous()
    #上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
    View Code

    六 Gevent之应用举例一

    from gevent import monkey;monkey.patch_all()
    import gevent
    import requests
    import time
    
    def get_page(url):
        print('GET: %s' %url)
        response=requests.get(url)
        if response.status_code == 200:
            print('%d bytes received from %s' %(len(response.text),url))
    
    
    start_time=time.time()
    gevent.joinall([
        gevent.spawn(get_page,'https://www.python.org/'),
        gevent.spawn(get_page,'https://www.yahoo.com/'),
        gevent.spawn(get_page,'https://github.com/'),
    ])
    stop_time=time.time()
    print('run time is %s' %(stop_time-start_time))
    协程应用:爬虫

    七 Gevent之应用举例二

    通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

    from gevent import monkey;monkey.patch_all()
    from socket import *
    import gevent
    
    #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
    # from gevent import socket
    # s=socket.socket()
    
    def server(server_ip,port):
        s=socket(AF_INET,SOCK_STREAM)
        s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
        s.bind((server_ip,port))
        s.listen(5)
        while True:
            conn,addr=s.accept()
            gevent.spawn(talk,conn,addr)
    
    def talk(conn,addr):
        try:
            while True:
                res=conn.recv(1024)
                print('client %s:%s msg: %s' %(addr[0],addr[1],res))
                conn.send(res.upper())
        except Exception as e:
            print(e)
        finally:
            conn.close()
    
    if __name__ == '__main__':
        server('127.0.0.1',8080)
    服务端 服务端
    from socket import *
    
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(('127.0.0.1',8080))
    
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        client.send(msg.encode('utf-8'))
        msg=client.recv(1024)
        print(msg.decode('utf-8'))
    客户端
    from threading import Thread
    from socket import *
    import threading
    
    def client(server_ip,port):
        c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
        c.connect((server_ip,port))
    
        count=0
        while True:
            c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
            msg=c.recv(1024)
            print(msg.decode('utf-8'))
            count+=1
    if __name__ == '__main__':
        for i in range(500):
            t=Thread(target=client,args=('127.0.0.1',8080))
            t.start()
    多线程并发多个客户端
  • 相关阅读:
    设置GridView、DataGrid 以提供thead、tbody等标签
    SqlCommandBuilder 可批量新增与修改数据
    js中的截流
    react代码分离方案
    redux在react中的使用
    react 生命周期
    react 函数bind(this)的三种方式
    react 三种组件定义方式
    linux系统下nginx安装目录和nginx.conf配置文件目录
    react component lifecycle
  • 原文地址:https://www.cnblogs.com/wanghaohao/p/7458869.html
Copyright © 2011-2022 走看看