zoukankan      html  css  js  c++  java
  • 数组平衡点

    一个序列的平衡点是这样的,它的左边的所有的元素的和应该等于右边的所有的元素的和,比如在下面的序列A:

    A[0] = -7   A[1] =  1   A[2] = 5
    A[3] =  2   A[4] = -4   A[5] = 3
    A[6] =  0

    3是一个平衡点因为:

    • A[0] + A[1] + A[2] = A[4] + A[5] + A[6]

    6也是一个平衡点因为:

    • A[0] + A[1] + A[2] + A[3] + A[4] + A[5] = 0

    (零个元素的和是零) 索引7不是平衡点,因为它不是序列A的有效索引。

    如果你仍然不是很清楚,那么这里给出了明确的定义:0 ≤ k < n 并且 sum[i=0]k-1A[i] = sum[i=k+1]n-1 A[i]。时, 整数k是序列A[0], A[1], ..., A[n−1]$ 的平衡点,这里我们假定零个元素的和为零。

    请写一个函数

    int equi(int A[], int N);

    返回给定序列的平衡点(任意一个)如果没有平衡点则返回−1,假设这个序列可达到非常大。

    假定:

    • N 是 [0..10,000,000] 内的 整数;
    • 数组 A 每个元素是取值范围 [−2,147,483,648..2,147,483,647] 内的 整数 .

    复杂度:

    • 最坏-情况下,期望的时间复杂度是 O(N);
    • 最坏-情况下,期望的空间复杂度是 O(N), 输入存储除外 (不计输入参数所需的存储空间).

    输入数组中的元素可以修改

    C#给出两个思路一样只是写法有点不同的方法:

    方法一:

     1 using System;
     2 using System.Collections.Generic;
     3 using System.Linq;
     4 class Solution {
     5   public int equi ( int[] A ) {
     6     if (A.Length <= 2)
     7       return -1;
     8     long summary = A.Sum();
     9     long left = 0;
    10 
    11     for (int i = 1; i < A.Length; i++)
    12     {
    13        left += A[i - 1];
    14        if (A[i] == left && summary - left - A[i] == A[i])
    15             return i;
    16      }
    17      return -1;
    18   }
    19 }

    方法二:

     1 using System;
     2 using System.Collections.Generic;
     3 using System.Linq;
     4 class Solution {
     5   public int equi ( int[] A ) {
     6     if (A.Length == 0)
     7                 return -1;
     8      long summary = A.Sum();
     9             
    10      long sum_left = 0;
    11      for (int i = 0; i < A.Length; i++)
    12      {
    13           long sum_right = summary - sum_left - A[i];
    14           if (sum_left == sum_right)
    15           {
    16                return i;
    17            }
    18            sum_left += A[i];
    19       }
    20        return -1;
    21   }
    22 }

    这两种写法优劣请大家一起来评判一下。

    ========================华丽的分割线==========================

    测试网站上给出的评判:

    方法一:

    Analysis
     
    testtimeresult
    example 
    Test from the task description
    0.080 s. OK
    simple 0.080 s. OK
    extreme_large_numbers 
    Sequence with extremly large numbers testing arithmetic overflow.
    0.070 s. RUNTIME ERROR 
    tested program terminated unexpectedly 
    stdout:
    Unhandled Exception: System.OverflowException: Number overflow.
      at System.Linq.Enumerable.<Sum>m__5E (Int32 a, Int32 b) [0x00000] 
      at System.Linq.Enumerable.Sum[Int32,Int32] (IEnumerable`1 source, System.Func`3 selector) [0x00000] 
      at System.Linq.Enumerable.Sum (IEnumerable`1 source) [0x00000] 
      at Solution.equi (System.Int32[] A) [0x00000] 
      at SolutionWrapper.run (System.String input, System.String output) [0x00000] 
      at SolutionWrapper.Main (System.String[] args) [0x00000] 
    
    overflow_tests 0.080 s. RUNTIME ERROR 
    tested program terminated unexpectedly 
    stdout:
    Unhandled Exception: System.OverflowException: Number overflow.
      at System.Linq.Enumerable.<Sum>m__5E (Int32 a, Int32 b) [0x00000] 
      at System.Linq.Enumerable.Sum[Int32,Int32] (IEnumerable`1 source, System.Func`3 selector) [0x00000] 
      at System.Linq.Enumerable.Sum (IEnumerable`1 source) [0x00000] 
      at Solution.equi (System.Int32[] A) [0x00000] 
      at SolutionWrapper.run (System.String input, System.String output) [0x00000] 
      at SolutionWrapper.Main (System.String[] args) [0x00000] 
    
    one_large 
    one large number at the end of the sequence
    0.070 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 0
    sum_0 
    sequence with sum=0
    0.070 s. OK
    single 
    single number
    0.070 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 0
    empty 
    Empty array
    0.060 s. OK
    combinations_of_two 
    multiple runs, all combinations of {-1,0,1}^2
    0.080 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 0
    combinations_of_three 
    multiple runs, all combinations of {-1,0,1}^3
    0.080 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 0
    small_pyramid 0.070 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 42
    large_long_sequence_of_ones 0.130 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 50000
    large_long_sequence_of_minus_ones 0.110 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 50002
    medium_pyramid 0.090 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 402
    large_pyramid 
    Large performance test, O(n^2) solutions should fail.
    0.160 s. WRONG ANSWER 
    got -1, but equilibrium point exists, for example on position 898

    方法二:

    Analysis
     
    Detected time complexity:
    O(N)
    testtimeresult
    example 
    Test from the task description
    0.100 s. OK
    simple 0.090 s. OK
    extreme_large_numbers 
    Sequence with extremly large numbers testing arithmetic overflow.
    0.070 s. RUNTIME ERROR 
    tested program terminated unexpectedly 
    stdout:
    Unhandled Exception: System.OverflowException: Number overflow.
      at System.Linq.Enumerable.<Sum>m__5E (Int32 a, Int32 b) [0x00000] 
      at System.Linq.Enumerable.Sum[Int32,Int32] (IEnumerable`1 source, System.Func`3 selector) [0x00000] 
      at System.Linq.Enumerable.Sum (IEnumerable`1 source) [0x00000] 
      at Solution.equi (System.Int32[] A) [0x00000] 
      at SolutionWrapper.run (System.String input, System.String output) [0x00000] 
      at SolutionWrapper.Main (System.String[] args) [0x00000] 
    
    overflow_tests 0.070 s. RUNTIME ERROR 
    tested program terminated unexpectedly 
    stdout:
    Unhandled Exception: System.OverflowException: Number overflow.
      at System.Linq.Enumerable.<Sum>m__5E (Int32 a, Int32 b) [0x00000] 
      at System.Linq.Enumerable.Sum[Int32,Int32] (IEnumerable`1 source, System.Func`3 selector) [0x00000] 
      at System.Linq.Enumerable.Sum (IEnumerable`1 source) [0x00000] 
      at Solution.equi (System.Int32[] A) [0x00000] 
      at SolutionWrapper.run (System.String input, System.String output) [0x00000] 
      at SolutionWrapper.Main (System.String[] args) [0x00000] 
    
    one_large 
    one large number at the end of the sequence
    0.070 s. OK
    sum_0 
    sequence with sum=0
    0.080 s. OK
    single 
    single number
    0.070 s. OK
    empty 
    Empty array
    0.060 s. OK
    combinations_of_two 
    multiple runs, all combinations of {-1,0,1}^2
    0.070 s. OK
    combinations_of_three 
    multiple runs, all combinations of {-1,0,1}^3
    0.070 s. OK
    small_pyramid 0.070 s. OK
    large_long_sequence_of_ones 0.100 s. OK
    large_long_sequence_of_minus_ones 0.120 s. OK
    medium_pyramid 0.090 s. OK
    large_pyramid 
    Large performance test, O(n^2) solutions should fail.
    0.160 s. OK
  • 相关阅读:
    KVC(key value coding)/ KVO(key value observing)
    手势识别
    导航控制器掌握内容:
    火车入轨_算法
    卡片游戏_算法
    Python合集之Python循环语句(一)
    Python合集之Python选择语句(四)
    Python合集之Python选择语句(三)
    Python合集之Python选择语句(二)
    Python合集之Python选择语句(一)
  • 原文地址:https://www.cnblogs.com/wanghonggang/p/2858962.html
Copyright © 2011-2022 走看看