zoukankan      html  css  js  c++  java
  • tensorflow入门:Neural Network for mnist

    在这里插入图片描述
    我们使用tensorflow实现类似于上图的简单深度网络,用于mnist数据集预测模型的实现。理论方面不再赘述。

    实现如下:

    import tensorflow as tf
    import random
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    tf.set_random_seed(1)
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    # define hyperparameters
    learning_rate = 0.001
    training_epoches = 15
    batch_size = 100
    
    # input place holders
    
    X = tf.placeholder(tf.float32, [None, 784]) # 28*28 = 784
    Y = tf.placeholder(tf.float32, [None, 10]) # 10 number of classes
    
    # weight & bias for layers
    W1 = tf.Variable(tf.random_normal([784, 256]))
    b1 = tf.Variable(tf.random_normal([256]))
    L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
    
    W2 = tf.Variable(tf.random_normal([256, 256]))
    b2 = tf.Variable(tf.random_normal([256]))
    L2 = tf.nn.relu(tf.matmul(L1, W2)+ b2)
    
    W3 = tf.Variable(tf.random_normal([256, 10]))
    b3 = tf.Variable(tf.random_normal([10]))
    L3 = tf.matmul(L2, W3) + b3
    
    # define loss & optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=L3, labels=Y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    with tf.Session() as sess:
        # initialize global variable
        sess.run(tf.global_variables_initializer())
        #train the modal
        for epoch in range(training_epoches):
            avg_cost = 0
            total_batch = int(mnist.train.num_examples / batch_size)
            
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                feed_dict = {X: batch_xs, Y: batch_ys}
                c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
                avg_cost += c / total_batch
                
            print('Epoch:', '%04d' %(epoch + 1), 'cost=', '{:.9f}'.format(avg_cost))
            
        print('Learning finished')
        
        correct_prediction = tf.equal(tf.argmax(L3, 1), tf.argmax(Y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print('Accuracy: ', sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}))
    
        # Choose one and predict
        r = random.randint(0, mnist.test.num_examples - 1)
        print("Actual label: ", sess.run(tf.argmax(mnist.test.labels[r: r+1], 1)))
        print("Prediction: ", sess.run(tf.argmax(L3, 1), feed_dict={X: mnist.test.images[r: r+1]}))
    
        plt.imshow(mnist.test.images[r: r+1].reshape(28, 28), cmap='Greys', interpolation='nearest')
        plt.show()
    
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    Epoch: 0001 cost= 150.137712487
    Epoch: 0002 cost= 39.704215820
    Epoch: 0003 cost= 25.038394092
    Epoch: 0004 cost= 17.644208637
    Epoch: 0005 cost= 12.640602860
    Epoch: 0006 cost= 9.425256237
    Epoch: 0007 cost= 6.992917965
    Epoch: 0008 cost= 5.167070087
    Epoch: 0009 cost= 3.878480178
    Epoch: 0010 cost= 2.969947652
    Epoch: 0011 cost= 2.171637326
    Epoch: 0012 cost= 1.684254840
    Epoch: 0013 cost= 1.305353469
    Epoch: 0014 cost= 0.982698343
    Epoch: 0015 cost= 0.853588527
    Learning finished
    Accuracy:  0.9444
    Actual label:  [9]
    Prediction:  [9]
    

    在这里插入图片描述

  • 相关阅读:
    再提一个建议,不过就要辛苦dudu了
    项目中的小项目实现在望
    Visual Studio.Net 技术Tip
    IQueryable与foreach的困惑?
    [转贴]浅析大型网站的架构
    [原创]WCF入门级使用教程(转载请注明出处)
    [原创]在msmq3.0中使用http协议发送消息
    [转贴][WCF Security] 4. 用户名/密码身份验证
    [转贴][WCF Security] 1. 基本概念
    [转]在SQL Server2005中进行错误捕捉
  • 原文地址:https://www.cnblogs.com/wanghongze95/p/13842485.html
Copyright © 2011-2022 走看看