zoukankan      html  css  js  c++  java
  • 聚类-31省市居民家庭消费水平-city

    ===分三类的=====

    ======分四类的========

    直接写文件名,那么你的那个txt文件应该是和py文件在同一个路径的

    ============code===========

    import numpy as np
    from sklearn.cluster import KMeans
    def loadData(filePath):
        fr = open(filePath,'r+')
        lines = fr.readlines()
        retData = []
        retCityName = []
        for line in lines:
            items = line.strip().split(",")
            retCityName.append(items[0])
            retData.append([float(items[i]) for i in range(1,len(items))])
        for i in range(1,len(items)):
            return retData,retCityName
    if __name__ == '__main__':
        data,cityName=loadData('city.txt')
        km = KMeans(n_clusters=3)
        label = km.fit_predict(data)
        expenses = np.sum(km.cluster_centers_,axis=1)
        #print(expense)
        CityCluster =[[],[],[]]
        for i in range(len(cityName)):
            CityCluster[label[i]].append(cityName[i])
        for i in range(len(CityCluster)):
            print("Expenses:%.2f"%expenses[i])
            print(CityCluster[i])
        =========

    1. import numpy as np
    2. from sklearn.cluster import KMeans
    3.  
    4.  
    5. def loadData(filePath):
    6.     fr open(filePath,'r+')
    7.     lines fr.readlines()
    8.     retData []
    9.     retCityName []
    10.     for line in lines:
    11.         items line.strip().split(",")
    12.         retCityName.append(items[0])
    13.         retData.append([float(items[i]) for in range(1,len(items))])
    14.     return retData,retCityName
    15.  
    16.      
    17. if __name__ ='__main__':
    18.     data,cityName loadData('city.txt')
    19.     km KMeans(n_clusters=4)
    20.     label km.fit_predict(data)
    21.     expenses np.sum(km.cluster_centers_,axis=1)
    22.     #print(expenses)
    23.     CityCluster [[],[],[],[]]
    24.     for in range(len(cityName)):
    25.         CityCluster[label[i]].append(cityName[i])
    26.     for in range(len(CityCluster)):
    27.         print("Expenses:%.2f" expenses[i])
    28.         print(CityCluster[i])
    沙耶加是最棒的也是最强的,今天换我来拯救世界!
  • 相关阅读:
    Mysql高可用MHA
    centos7.2 安装mysql5.7.13
    keepalived+双主实现数据库的高可用
    xtrabackup 完全备份+xtrabacup 增量备份
    xtrabackup 进行 MySQL 数据库备份
    mysql所有备份与恢复
    sysbench压测工具 压测 mysql
    查看CPU性能参数(mpstat, iostat, sar、vmstat)等命令详解
    脚本
    解决 Let’s Encrypt SSL 证书配置错误
  • 原文地址:https://www.cnblogs.com/wanghui626/p/10361631.html
Copyright © 2011-2022 走看看