zoukankan      html  css  js  c++  java
  • 聚类-31省市居民家庭消费水平-city

    ===分三类的=====

    ======分四类的========

    直接写文件名,那么你的那个txt文件应该是和py文件在同一个路径的

    ============code===========

    import numpy as np
    from sklearn.cluster import KMeans
    def loadData(filePath):
        fr = open(filePath,'r+')
        lines = fr.readlines()
        retData = []
        retCityName = []
        for line in lines:
            items = line.strip().split(",")
            retCityName.append(items[0])
            retData.append([float(items[i]) for i in range(1,len(items))])
        for i in range(1,len(items)):
            return retData,retCityName
    if __name__ == '__main__':
        data,cityName=loadData('city.txt')
        km = KMeans(n_clusters=3)
        label = km.fit_predict(data)
        expenses = np.sum(km.cluster_centers_,axis=1)
        #print(expense)
        CityCluster =[[],[],[]]
        for i in range(len(cityName)):
            CityCluster[label[i]].append(cityName[i])
        for i in range(len(CityCluster)):
            print("Expenses:%.2f"%expenses[i])
            print(CityCluster[i])
        =========

    1. import numpy as np
    2. from sklearn.cluster import KMeans
    3.  
    4.  
    5. def loadData(filePath):
    6.     fr open(filePath,'r+')
    7.     lines fr.readlines()
    8.     retData []
    9.     retCityName []
    10.     for line in lines:
    11.         items line.strip().split(",")
    12.         retCityName.append(items[0])
    13.         retData.append([float(items[i]) for in range(1,len(items))])
    14.     return retData,retCityName
    15.  
    16.      
    17. if __name__ ='__main__':
    18.     data,cityName loadData('city.txt')
    19.     km KMeans(n_clusters=4)
    20.     label km.fit_predict(data)
    21.     expenses np.sum(km.cluster_centers_,axis=1)
    22.     #print(expenses)
    23.     CityCluster [[],[],[],[]]
    24.     for in range(len(cityName)):
    25.         CityCluster[label[i]].append(cityName[i])
    26.     for in range(len(CityCluster)):
    27.         print("Expenses:%.2f" expenses[i])
    28.         print(CityCluster[i])
    沙耶加是最棒的也是最强的,今天换我来拯救世界!
  • 相关阅读:
    398. Random Pick Index
    382. Linked List Random Node
    645. Set Mismatch
    174. Dungeon Game
    264. Ugly Number II
    115. Distinct Subsequences
    372. Super Pow
    LeetCode 242 有效的字母异位词
    LeetCode 78 子集
    LeetCode 404 左叶子之和
  • 原文地址:https://www.cnblogs.com/wanghui626/p/10361631.html
Copyright © 2011-2022 走看看