zoukankan      html  css  js  c++  java
  • kafka java api生产者

    import java.util.HashMap;

    import java.util.List;
    import java.util.Map;
    import java.util.Properties;

    import org.junit.Test;

    import kafka.consumer.Consumer;
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;


    public class KafkaProducer {

    private final Producer<String, String> producer;
    public final static String TOPIC = "test";

    private KafkaProducer(){

    Properties props = new Properties();

    // 此处配置的是kafka的broker地址:端口列表
    props.put("metadata.broker.list", "192.168.170.185:9092,192.168.170.185:9093,192.168.170.185:9094");

    //配置value的序列化类
    props.put("serializer.class", "kafka.serializer.StringEncoder");

    //配置key的序列化类
    props.put("key.serializer.class", "kafka.serializer.StringEncoder");

    //request.required.acks
    //0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails).
    //1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost).
    //-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains.
    // props.put("request.required.acks","-1");

    producer = new Producer<String, String>(new ProducerConfig(props));
    }

    void produce() {
    int messageNo = 1;
    final int COUNT = 101;

    int messageCount = 0;
    while (messageNo < COUNT) {
    String key = String.valueOf(messageNo);
    String data = "Hello kafka message :" + key;
    producer.send(new KeyedMessage<String, String>(TOPIC, key ,data));
    System.out.println(data);
    messageNo ++;
    messageCount++;
    }

    System.out.println("Producer端一共产生了" + messageCount + "条消息!");
    }

    public static void main( String[] args )
    {
    new KafkaProducer().produce();
    }

    }

  • 相关阅读:
    C++11模板类使用心得
    Linux下MakeFile初探
    Leetcode 35 Search Insert Position 二分查找(二分下标)
    Leetcode 4 Median of Two Sorted Arrays 二分查找(二分答案+二分下标)
    数据库分库分表的应用场景及方法分析
    DB主从一致性的几种解决方法
    Redis主从复制和集群配置
    RPC vs RESTful
    Mysql锁详解
    BIO与NIO、AIO的区别
  • 原文地址:https://www.cnblogs.com/wangjing666/p/6860748.html
Copyright © 2011-2022 走看看