zoukankan      html  css  js  c++  java
  • Android Matrix理论与应用详解

    转:http://zensheno.blog.51cto.com/2712776/513652

    Matrix学习——基础知识

    以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。

    首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。

    clip_image001

    首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:

    x = x0  + △x 
    y = y0  + △y

    采用矩阵表达上述如下: 
    clip_image002

    上述也类似与图像的平移,通过上述矩阵我们发现,只需要修改矩阵右上角的2个元素就可以了。

    我们回头看上述矩阵的划分: 
    clip_image003

    为了验证上面的功能划分,我们举个具体的例子:现设点P0(x0 ,y0)进行平移后,移到P(x,y),其中x放大a倍,y放大b倍,

    矩阵就是:clip_image004,按照类似前面“平移”的方法就验证。

    图像的旋转稍微复杂:现设点P0(x0, y0)旋转θ角后的对应点为P(x, y)。通过使用向量,我们得到如下:

    x0 = r cosα 
    y0 = r sinα

    x = r cos(α+θ) = x0 cosθ - y0 sinθ 
    y = r sin(α+θ) = x0 sinθ + y0 cosθ

    于是我们得到矩阵:clip_image005

    如果图像围绕着某个点(a ,b)旋转呢?则先要将坐标平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点,在后面的篇幅中我们将详细介绍。

      Matrix学习——如何使用Matrix

    上一篇幅 Matrix学习——基础知识,从高等数学方面给大家介绍了Matrix,本篇幅我们就结合Android 中的android.graphics.Matrix来具体说明,还记得我们前面说的图像旋转的矩阵:

    clip_image005[1]

    从最简单的旋转90度的是:

    clip_image006

    在android.graphics.Matrix中有对应旋转的函数: 
    Matrix matrix = new Matrix(); 
    matrix.setRotate(90); 
    Test.Log(MAXTRIX_TAG,”setRotate(90):%s” , matrix.toString());

    clip_image007

    查看运行后的矩阵的值(通过Log输出):

    clip_image008

    与上面的公式基本完全一样(android.graphics.Matrix采用的是浮点数,而我们采用的整数)。

    有了上面的例子,相信大家就可以亲自尝试了。通过上面的例子我们也发现,我们也可以直接来初始化矩阵,比如说要旋转30度:

    clip_image010

    前面给大家介绍了这么多,下面我们开始介绍图像的镜像,分为2种:水平镜像、垂直镜像。先介绍如何实现垂直镜像,什么是垂直镜像就不详细说明。图像的垂直镜像变化也可以用矩阵变化的表示,设点P0(x0 ,y0 )进行镜像后的对应点为P(x ,y ),图像的高度为fHeight,宽度为fWidth,原图像中的P0(x0 ,y0 )经过垂直镜像后的坐标变为(x0 ,fHeight- y0); 
    x = x0 
    y = fHeight – y0 
    推导出相应的矩阵是:

    clip_image011

    final float f[] = {1.0F,0.0F,0.0F,0.0F,-1.0F,120.0F,0.0F,0.0F,1.0F}; 
    Matrix matrix = new Matrix(); 
    matrix.setValues(f);

    按照上述方法运行后的结果: 
    clip_image012

    至于水平镜像采用类似的方法,大家可以自己去试试吧。

    实际上,使用下面的方式也可以实现垂直镜像: 
    Matrix matrix = new Matrix(); 
    matrix.setScale (1.0,-1.0); 
    matrix.postTraslate(0, fHeight);

    这就是我们将在后面的篇幅中详细说明。

      Matrix学习——图像的复合变化

    Matrix学习——基础知识篇幅中,我们留下一个话题:如果图像围绕着某个点P(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点。

    我们需要3步:

    1. 平移——将坐标系平移到点P(a,b);

    2. 旋转——以原点为中心旋转图像;

    3. 平移——将旋转后的图像平移回到原来的坐标原点;

    相比较前面说的图像的几何变化(基本的图像几何变化),这里需要平移——旋转——平移,这种需要多种图像的几何变化就叫做图像的复合变化。

    设对给定的图像依次进行了基本变化F1F2F3…..Fn,它们的变化矩阵分别为T1T2T3…..Tn,图像复合变化的矩阵T可以表示为:T = TnTn-1…T1

    按照上面的原则,围绕着某个点(a,b)旋转θ的变化矩阵序列是:

    clip_image013

    按照上面的公式,我们列举一个简单的例子:围绕(100,100)旋转30度(sin 30 = 0.5 ,cos 30 = 0.866) 
    float f[]= { 0.866F,  -0.5F, 63.4F,0.5F, 0.866F,-36.6F,0.0F,    0.0F,  1.0F }; 
    matrix = new Matrix(); 
    matrix.setValues(f); 
    旋转后的图像如下:

    clip_image014

    Android为我们提供了更加简单的方法,如下: 
    Matrix matrix = new Matrix(); 
    matrix.setRotate(30,100,100); 
    矩阵运行后的实际结果: 
    clip_image015 
    与我们前面通过公式获取得到的矩阵完全一样。

    在这里我们提供另外一种方法,也可以达到同样的效果: 
    float a = 100.0F,b = 100.0F; 
    matrix = new Matrix(); 
    matrix.setTranslate(a,b); 
    matrix.preRotate(30); 
    matrix.preTranslate(-a,-b); 
    将在后面的篇幅中为大家详细解析

    通过类似的方法,我们还可以得到:相对点P(ab)的比例[sx,sy]变化矩阵

    clip_image016

    Matrix学习——Preconcats or Postconcats?

    从最基本的高等数学开始,Matrix的基本操作包括:+、*。Matrix的乘法不满足交换律,也就是说A*B ≠B*A。

    还有2种常见的矩阵:

    clip_image017

    有了上面的基础,下面我们开始进入主题。由于矩阵不满足交换律,所以用矩阵B乘以矩阵A,需要考虑是左乘(B*A),还是右乘(A*B)。在Android的android.graphics.Matrix中为我们提供了类似的方法,也就是我们本篇幅要说明的Preconcats matrix 与 Postconcats  matrix。下面我们还是通过具体的例子还说明:

    clip_image018

    通过输出的信息,我们分析其运行过程如下:

    clip_image019

    看了上面的输出信息。我们得出结论:Preconcats matrix相当于右乘矩阵,Postconcats  matrix相当于左乘矩阵

    上一篇幅中,我们说到:

    clip_image020

    其晕死过程的详细分析就不在这里多说了。

      Matrix学习——错切变换

    什么是图像的错切变换(Shear transformation)?我们还是直接看图片错切变换后是的效果:

    clip_image021

    clip_image022

    对图像的错切变换做个总结:

    clip_image023

    x = x0 + b*y0;

    y = d*x0 + y0;

    clip_image024

    这里再次给大家介绍一个需要注意的地方:

    clip_image025

    通过以上,我们发现MatrixsetXXXX()函数,在调用时调用了一次reset(),这个在复合变换时需要注意。

      Matrix学习——对称变换(反射)

    什么是对称变换?具体的理论就不详细说明了,图像的镜像就是对称变换中的一种。

    clip_image026

    利用上面的总结做个具体的例子,产生与直线y= – x对称的反射图形,代码片段如下:

    clip_image027

    当前矩阵输出是:

    clip_image028

    图像变换的效果如下:

    clip_image029

     

      附:三角函数公式

    两角和公式

    sin(a+b)=sinacosb+cosasinb

    sin(a-b)=sinacosb-sinbcosa �

    cos(a+b)=cosacosb-sinasinb

    cos(a-b)=cosacosb+sinasinb

    tan(a+b)=(tana+tanb)/(1-tanatanb)

    tan(a-b)=(tana-tanb)/(1+tanatanb)

    cot(a+b)=(cotacotb-1)/(cotb+cota) �

    cot(a-b)=(cotacotb+1)/(cotb-cota)

    倍角公式

    tan2a=2tana/[1-(tana)^2]

    cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

    sin2a=2sina*cosa

    半角公式

    sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

    cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

    tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

    cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) �

    tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

    和差化积

    2sinacosb=sin(a+b)+sin(a-b)

    2cosasinb=sin(a+b)-sin(a-b) )

    2cosacosb=cos(a+b)-sin(a-b)

    -2sinasinb=cos(a+b)-cos(a-b)

    sina+sinb=2sin((a+b)/2)cos((a-b)/2

    cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

    tana+tanb=sin(a+b)/cosacosb

    积化和差公式

    sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

    cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

    sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

    诱导公式

    sin(-a)=-sin(a)

    cos(-a)=cos(a)

    sin(pi/2-a)=cos(a)

    cos(pi/2-a)=sin(a)

    sin(pi/2+a)=cos(a)

    cos(pi/2+a)=-sin(a)

    sin(pi-a)=sin(a)

    cos(pi-a)=-cos(a)

    sin(pi+a)=-sin(a)

    cos(pi+a)=-cos(a)

    tga=tana=sina/cosa

    万能公式

    sin(a)= (2tan(a/2))/(1+tan^2(a/2))

    cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

    tan(a)= (2tan(a/2))/(1-tan^2(a/2))

    其它公式

    a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

    a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

    1+sin(a)=(sin(a/2)+cos(a/2))^2

    1-sin(a)=(sin(a/2)-cos(a/2))^2

    其他非重点三角函数

    csc(a)=1/sin(a)

    sec(a)=1/cos(a)

    双曲函数

    sinh(a)=(e^a-e^(-a))/2

    cosh(a)=(e^a+e^(-a))/2

    tgh(a)=sinh(a)/cosh(a)

  • 相关阅读:
    xcode 各种项目设置
    poj 2240 floyd算法
    MySQL參数binlog-do-db对binlogs写入的影响
    cocos2D(一)----第一个cocos2D程序
    mahout測试朴素贝叶斯分类样例
    sql for xml query sample
    辛星解读之php中的重点函数第一节之数组函数
    java集合经常出现空指针问题的解决方案
    java常量设置的方式
    java中如果需要精确的计算答案,请避免使用double类型与float类型
  • 原文地址:https://www.cnblogs.com/wangle1001986/p/4092200.html
Copyright © 2011-2022 走看看