zoukankan      html  css  js  c++  java
  • Factorial

    Problem Description
    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
    ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 

    The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 

    For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.
     
    Input
    There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000. 
     
    Output
    For every number N, output a single line containing the single non-negative integer Z(N).
     
    Sample Input
    6
    3
    60
    100
    1024
    23456
    8735373
     
    Sample Output
    0
    14
    24
    253
    5861
    2183837
     
     
    分析:题目要求解的是N阶乘的结果有多少个0?(1<=N<=1000000000)

    注意一下几个方面:

    1、任何一个自然数都可分解质因数。N!=1*2*3*(2*2)*5*(2*3)*...*N=2^a*3^b*5^c*7^d......=(2*5)^c*2^(a-c)*3^b*7^d......=10^c*2^(a-c)*3^b*7^d......

    2、两数相乘产生0,是因为2和5相乘。又由于在分解质因数时小的质数的幂次一定>=大的质数的幂次,在N!中2的个数显然大于5的个数,故解决该题转化成找出N!中5的幂次。

    3、如何找出5的幂次呢?其实就是 N!中:是5的倍数的数+是5^2的倍数的数+5^3的倍数的数+.....

    如50!中: 
    含有10个5的倍数的数:5,15,20,25,30,35,40,45,50 [50/5=10] 
    含有2个5^2的倍数的数:25,50 [50/(5^2)=2] 
    可见N!中一共有12个5相乘,那么N!结果中的0也必有12个。

     
     
     1 #include<iostream>  
     2 using namespace std;  
     3   
     4 int main()  
     5 {  
     6     int num,key;  
     7     cin>>key;  
     8     while(key--)  
     9     {  
    10         cin>>num;  
    11         int sum=0;  
    12         int temp=5;  
    13         while(num/temp!=0)  
    14         {  
    15             sum=sum+num/temp;  
    16             temp=temp*5;  
    17         }  
    18         cout<<sum<<endl;  
    19     }  
    20     return 0;  
    21 }  
  • 相关阅读:
    Hashtable,挺爽的一个东西,大家都用烂了吧,我再画蛇添足一下。
    今天你写控件了吗?ASP.net控件开发系列(八)
    Attribute在运行期赋值?
    整几个题给大家玩玩,看看“下盘功夫”怎样
    当stringFormat碰上{和}
    一句SQL语句解决倒序数据分页提取
    C#扩展一般用于linq
    字符串转日期类型
    Dispatcher与UI线程交互
    圆形进度条
  • 原文地址:https://www.cnblogs.com/wangmengmeng/p/4726156.html
Copyright © 2011-2022 走看看