zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    Source

    题解:真心坑死....自己好不细心.....把dp[][]定义成了char类型....

    代码:

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <math.h>
     4 #include <limits.h> 
     5 #include <algorithm>
     6 #include <iostream>
     7 #include <ctype.h>
     8 #include <iomanip>
     9 #include <queue>
    10 #include <map>
    11 #include <stdlib.h>
    12 using namespace std;
    13 
    14 char a[1001],b[1001];
    15 int dp[1001][1001];
    16 
    17 int LCS(int n,int m){
    18     int i,j;
    19     int len=max(n,m);
    20     for(i=0;i<=len;i++){
    21         dp[i][0]=0;
    22         dp[0][i]=0;
    23     }
    24     for(i=1;i<=n;i++){
    25         for(j=1;j<=m;j++){
    26             if(a[i-1]==b[j-1]){
    27                 dp[i][j]=dp[i-1][j-1]+1;
    28             }
    29             else{
    30                 dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    31             }
    32         }
    33     }
    34     return dp[n][m];
    35 }
    36 
    37 int main()
    38 {
    39     while(~scanf("%s%s",&a,&b)){
    40     int n=strlen(a);
    41     int m=strlen(b);
    42     int i,j;
    43     int len=max(n,m);
    44     for(i=0;i<=len;i++){
    45         dp[i][0]=0;
    46         dp[0][i]=0;
    47     }
    48     for(i=1;i<=n;i++){
    49         for(j=1;j<=m;j++){
    50             if(a[i-1]==b[j-1]){
    51                 dp[i][j]=dp[i-1][j-1]+1;
    52             }
    53             else{
    54                 dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    55             }
    56         }
    57     }
    58     printf("%d
    ",dp[n][m]);
    59     /*int i=n-1,j=m-1,count=k;
    60     while(count!=0){
    61         if(a[i]==b[j]){
    62             cout<<a[i];
    63             i--;
    64             j--;
    65             count--;
    66         }
    67         else if(dp[i][j-1]>dp[i-1][j]){
    68             j--;
    69         }
    70         else{
    71             i--;
    72         }
    73     }
    74     cout<<endl;*/
    75     }
    76 }
  • 相关阅读:
    Windows常用命令
    Linux常用命令
    SpringBoot实现动态数据源切换及单库事务控制
    ArrayList与LinkedList
    java学习笔记之集合—ArrayList源码解析
    java学习笔记之反射—反射和工厂模式
    java学习笔记之反射—Class类实例化和对象的反射实例化
    java学习笔记之IO编程—对象序列化
    java学习笔记之IO编程—打印流和BufferedReader
    java学习笔记之IO编程—内存流、管道流、随机流
  • 原文地址:https://www.cnblogs.com/wangmengmeng/p/5019558.html
Copyright © 2011-2022 走看看