zoukankan      html  css  js  c++  java
  • Claris and XOR

    Problem Description

    Claris loves bitwise operations very much, especially XOR, because it has many beautiful features. He gets four positive integers a,b,c,da,b,c,d that satisfies aleq bab and cleq dcd. He wants to choose two integers x,yx,y that satisfies aleq xleq baxb and cleq yleq dcyd, and maximize the value of x~XOR~yx XOR y. But he doesn't know how to do it, so please tell him the maximum value of x~XOR~yx XOR y.

    Input

    The first line contains an integer Tleft(1leq Tleq10,000 ight)T(1T10,000)——The number of the test cases. For each test case, the only line contains four integers a,b,c,dleft(1leq a,b,c,dleq10^{18} ight)a,b,c,d(1a,b,c,d1018​​). Between each two adjacent integers there is a white space separated.

    Output

    For each test case, the only line contains a integer that is the maximum value of x~XOR~yx XOR y.

    Sample Input
    2
    1 2 3 4
    5 7 13 15
    
    Sample Output
    6
    11
    Hint
    In the first test case, when and only when x=2,y=4x=2,y=4, the value of x~XOR~yx XOR y is the maximum. In the second test case, when and only when x=5,y=14x=5,y=14 or x=6,y=13x=6,y=13, the value of x~XOR~yx XOR y is the maximum.
     
     
     
    这游戏真难,之前写过一道类似的,就直接敲了...o(n)...超时....
     
     
    TLE代码:
     1 #include <vector>
     2 #include <map>
     3 #include <set>
     4 #include <algorithm>
     5 #include <iostream>
     6 #include <cstdio>
     7 #include <cmath>
     8 #include <cstdlib>
     9 #include <string>
    10 #include <cstring>
    11 #include <queue>
    12 using namespace std;
    13 #define INF 0x3f3f3f3f
    14 #define ll long long
    15 
    16 int const MAX = 100000005;
    17 int n;
    18 
    19 struct Trie
    20 {
    21     int root, tot, next[MAX][2], end[MAX];
    22     inline int node()
    23     {
    24         memset(next[tot], -1, sizeof(next[tot]));
    25         end[tot] = 0;
    26         return tot ++;
    27     }
    28 
    29     inline void Init()
    30     {
    31         tot = 0;
    32         root = node();
    33     }
    34 
    35     inline void insert(ll x)
    36     {
    37         int p = root;
    38         for(int i = 31; i >= 0; i--)
    39         {
    40             int ID = ((1 << i) & x) ? 1 : 0;
    41             if(next[p][ID] == -1)
    42                 next[p][ID] = node();
    43             p = next[p][ID];
    44         }
    45         end[p] = x;
    46     }
    47 
    48     inline int search(int x)
    49     {
    50         int p = root;
    51         for(int i = 31; i >= 0; i--)
    52         {
    53             int ID = ((1 << i) & x) ? 1 : 0;
    54             if(ID == 0)
    55                 p = next[p][1] != -1 ? next[p][1] : next[p][0];
    56             else
    57                 p = next[p][0] != -1 ? next[p][0] : next[p][1];
    58         }
    59         return x ^ end[p];
    60     }
    61 
    62 }trie;
    63 
    64 int a[2],b[2];
    65 int main()
    66 {
    67     int t;
    68     scanf("%d",&t);
    69     while(t--)
    70     {
    71         int n=4;
    72         int WTF = 0,ans=0, x;
    73         trie.Init();
    74         for(int i = 0; i < 2; i++)
    75         {
    76             scanf("%d", &a[i]);
    77         }
    78         for(int i = 0; i < 2; i++)
    79         {
    80             scanf("%d", &b[i]);
    81         }
    82         for(int i=a[0]; i<=a[1]; i++){
    83             //WTF=0;
    84             //trie.insert(1);
    85             //WTF = WTFx(WTF, trie.search(1));
    86             for(int j=b[0]; j<=b[1]; j++){
    87                 trie.Init();
    88                 trie.insert(i);
    89                 WTF = max(WTF, trie.search(i));
    90                 trie.insert(j);
    91                 WTF = max(WTF, trie.search(j));
    92                 ans=max(WTF,ans);
    93             }
    94         }    
    95         printf("%d
    ", WTF);
    96     }
    97 }
  • 相关阅读:
    集合总结
    dagger2系列之Scope
    dagger2系列之依赖方式dependencies、包含方式(从属方式)SubComponent
    dagger2系列之生成类实例
    Dagger2系列之使用方法
    Handler系列之内存泄漏
    Handler系列之创建子线程Handler
    Handler系列之原理分析
    Handler系列之使用
    HTML标签
  • 原文地址:https://www.cnblogs.com/wangmengmeng/p/5372629.html
Copyright © 2011-2022 走看看