zoukankan      html  css  js  c++  java
  • Long-read error correction: a survey and qualitative comparison

    Long-read error correction: a survey and qualitative comparison

    长读纠错:调查和定性比较

    Pierre Morisse, Thierry Lecroq, Arnaud Lefebvre

    Abstract

    Third generation sequencing technologies Pacific Biosciences and Oxford Nanopore Technologies were respectively made available in 2011 and 2014. In contrast with second generation sequencing technologies such as Illumina, these new technologies allow the sequencing of long reads of tens to hundreds of kbps. These so called long reads are particularly promising, and are especially expected to solve various problems such as contig and haplotype assembly or scaffolding, for instance. However, these readers are also much more error prone than second generation reads, and display error rates reaching 10 to 30%, according to the sequencing technology and to the version the chemistry. Moreover, these errors are mainly composed of insertions and deletions, whereas most errors were substitutions in Illumina reads. As a result, long reads require efficient error correction, and a plethora of error correction tools, directly targeted at these reads, were developed in the past nine years. These methods can adopt an hybrid approach, using complementary short reads to perform correction, or a self-correction approach, only making use of the information contained in the long reads sequences. Both theses approaches make use of various strategies such as multiple sequence alignment, de Bruijn graphs, hidden Markov models, or even combine different strategies.

    In this paper, we describe a complete state-of-the-art of long-read error correction, reviewing all the different methodologies and tools existing up to date, for both hybrid and self-correction. Moreover, the long reads characteristics, such as sequencing depth, length, error rate, or even sequencing technology, can have an impact on how well a given tool or strategy performs, and can thus drastically reduce the correction quality. We thus also present an in depth benchmark of available long-read error correction tools, on a wide variety of datasets, composed of both simulated and real data, with various error rates, coverages, and read lengths, ranging from small bacterial to large mammal genomes.

     
  • 相关阅读:
    Maximum Depth of Binary Tree
    Single Number
    Merge Two Sorted Lists
    Remove Nth Node From End of List
    Remove Element
    Remove Duplicates from Sorted List
    Add Two Numbers
    编译视频直播点播平台EasyDSS数据排序使用Go 语言 slice 类型排序的实现介绍
    RTMP协议视频直播点播平台EasyDSS在Linux系统中以服务启动报错can’t evaluate field RootPath in type*struct排查
    【解决方案】5G时代RTMP推流服务器/互联网直播点播平台EasyDSS实现360°全景摄像机VR直播
  • 原文地址:https://www.cnblogs.com/wangprince2017/p/13755911.html
Copyright © 2011-2022 走看看