zoukankan      html  css  js  c++  java
  • HDU 5912 Fraction(模拟)

    Problem Description
    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?
     
    Input
    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).
     
    Output
    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.
     
    Sample Input
    1
    2
    1 1
    2 3
     
    Sample Output
    Case #1: 1 2
     
     
    题目大意:给定a,b两个长度为n得数组,求出按图示公式计算后的分式的分子分母
    思路: 模拟!由于n不大,可以直接从后往前模拟一边,最后求一遍最大公约数即可
     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstring>
     4 #include<cstdio>
     5 
     6 using namespace std;
     7 int T,n;
     8 int a[100],b[100];
     9 int gcd(int c,int d){
    10     if(c==d)return c;
    11     else if(c<d)return gcd(d-c,c);
    12     return gcd(c-d,d);
    13 }
    14 void Swap(int &c,int &d){
    15     c = c^d;
    16     d = c^d;
    17     c = c^d;
    18 }
    19 int main()
    20 {
    21     scanf("%d",&T);
    22     for(int t=1;t<=T;t++){
    23         scanf("%d",&n);
    24         for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    25         for(int i=1;i<=n;i++)scanf("%d",&b[i]);
    26         int fa = a[n],fb = b[n];
    27         for(int i=n-1;i>=1;i--){
    28             fb = a[i]*fa+fb;
    29             Swap(fa,fb);
    30             fb *= b[i];
    31         }
    32         printf("Case #%d: ",t);
    33         int tmp = gcd(fa,fb);
    34         printf("%d %d
    ",fb/tmp,fa/tmp);
    35     }
    36     return 0;
    37 }
  • 相关阅读:
    python+opencv实现图像缩放
    vim 常用指令-持续更新
    python实现简单的SVM
    linux查看当前目录下,各文件夹大小
    python解析json文件信息到csv中
    根据小图文件名在原图画框
    BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)
    BZOJ1044: [HAOI2008]木棍分割 (二分 + DP)
    gym100825G. Tray Bien(轮廓线DP)
    BZOJ1237: [SCOI2008]配对
  • 原文地址:https://www.cnblogs.com/wangrunhu/p/9614575.html
Copyright © 2011-2022 走看看