zoukankan      html  css  js  c++  java
  • 二次元P2和三次元P3Neumann边界条件的处理

     二次元P2Neumann边界条件的处理

        % Neumann boundary condition
        if ~isempty(pde.g_N) && ~isempty(Neumann) && ~(isnumeric(pde.g_N) && (pde.g_N == 0))
            if ~isfield(option,'gNquadorder')
                option.gNquadorder = 4;   % default order
            end
            [lambdagN,weightgN] = quadpts1(option.gNquadorder);
            nQuadgN = size(lambdagN,1);
            % quadratic bases on an edge (1---3---2)
            bdphi = zeros(nQuadgN,3);        
            bdphi(:,1) = (2*lambdagN(:,1)-1).*lambdagN(:,1);
            bdphi(:,2) = (2*lambdagN(:,2)-1).*lambdagN(:,2);
            bdphi(:,3) = 4*lambdagN(:,1).*lambdagN(:,2);
            % length of edge
            el = sqrt(sum((node(Neumann(:,1),:) - node(Neumann(:,2),:)).^2,2));
            ge = zeros(size(Neumann,1),3);
            for pp = 1:nQuadgN
                ppxy = lambdagN(pp,1)*node(Neumann(:,1),:) ...
                     + lambdagN(pp,2)*node(Neumann(:,2),:);
                gNp = pde.g_N(ppxy);
                ge(:,1) = ge(:,1) + weightgN(pp)*gNp*bdphi(pp,1);
                ge(:,2) = ge(:,2) + weightgN(pp)*gNp*bdphi(pp,2);
                ge(:,3) = ge(:,3) + weightgN(pp)*gNp*bdphi(pp,3); % interior bubble
            end
            % update RHS
            ge = ge.*repmat(el,1,3);        
            b(1:N) = b(1:N) + accumarray(Neumann(:), [ge(:,1); ge(:,2)],[N,1]);
            b(N+Neumannidx) = b(N+Neumannidx) + ge(:,3);
        end

    三次元P3Neumann边界条件的处理

     1     % Neumann boundary condition
     2     if ~isempty(pde.g_N) && ~isempty(Neumann) && ~(isnumeric(pde.g_N) && (pde.g_N == 0))
     3         if ~isfield(option,'gNquadorder')
     4             option.gNquadorder = 6;  
     5         end
     6         [lambdagN,weightgN] = quadpts1(option.gNquadorder);
     7         nQuadgN = size(lambdagN,1);
     8         % quadratic bases (1---3---4--2)
     9         bdphi = zeros(nQuadgN,4);        
    10         bdphi(:,1) = 0.5*(3*lambdagN(:,1)-1).*(3*lambdagN(:,1)-2).*lambdagN(:,1); 
    11         bdphi(:,2) = 0.5*(3*lambdagN(:,2)-1).*(3*lambdagN(:,2)-2).*lambdagN(:,2);
    12         bdphi(:,3) = 9/2*lambdagN(:,1).*lambdagN(:,2).*(3*lambdagN(:,1)-1);
    13         bdphi(:,4) = 9/2*lambdagN(:,1).*lambdagN(:,2).*(3*lambdagN(:,2)-1);
    14         % length of edge
    15         el = sqrt(sum((node(Neumann(:,1),:) - node(Neumann(:,2),:)).^2,2));
    16         ge = zeros(size(Neumann,1),4);
    17         for pp = 1:nQuadgN
    18             ppxy = lambdagN(pp,1)*node(Neumann(:,1),:) ...
    19                  + lambdagN(pp,2)*node(Neumann(:,2),:);
    20             gNp = pde.g_N(ppxy);
    21             ge(:,1) = ge(:,1) + weightgN(pp)*gNp*bdphi(pp,1);
    22             ge(:,2) = ge(:,2) + weightgN(pp)*gNp*bdphi(pp,2);
    23             ge(:,3) = ge(:,3) + weightgN(pp)*gNp*bdphi(pp,3);    
    24             ge(:,4) = ge(:,4) + weightgN(pp)*gNp*bdphi(pp,4);
    25         end
    26         ge = ge.*repmat(el,1,4);
    27         b(1:N) = b(1:N) + accumarray(Neumann(:), [ge(:,1); ge(:,2)],[N,1]);
    28         b(N+2*Neumannidx-1) = b(N+2*Neumannidx-1) + ge(:,3);
    29         b(N+2*Neumannidx)   = b(N+2*Neumannidx) + ge(:,4);
    30     end
  • 相关阅读:
    第十二章学习笔记
    UVa OJ 107 The Cat in the Hat (戴帽子的猫)
    UVa OJ 123 Searching Quickly (快速查找)
    UVa OJ 119 Greedy Gift Givers (贪婪的送礼者)
    UVa OJ 113 Power of Cryptography (密文的乘方)
    UVa OJ 112 Tree Summing (树的求和)
    UVa OJ 641 Do the Untwist (解密工作)
    UVa OJ 105 The Skyline Problem (地平线问题)
    UVa OJ 100 The 3n + 1 problem (3n + 1问题)
    UVa OJ 121 Pipe Fitters (装管子)
  • 原文地址:https://www.cnblogs.com/wangshixi12/p/15396819.html
Copyright © 2011-2022 走看看