zoukankan      html  css  js  c++  java
  • 梯度下降算法中遇到的错误

    没有同时更新theta(1)和theta(2)

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
    
    
    
    
    
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
        theta(1)=theta(1)-alpha*sum(X*theta-y)/m
        theta(2)=theta(2)-alpha*(X(:,2))'*(X*theta-y)/m
    end
    
    end

    提交没有通过

    应该改为如下

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
    
    
    
    
    
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
        t=theta
        t(1)=t(1)-alpha*sum(X*theta-y)/m
        t(2)=t(2)-alpha*(X(:,2))'*(X*theta-y)/m
        theta=t
    end
    
    end
  • 相关阅读:
    如何下载网络图片资源
    经典排序之快速排序(含红黑树)
    经典排序之归并排序
    node微信公众号开发---自动回复
    koa2的文件上传
    async await的用法
    Generator yield语法和 co模块
    CentOS 7 下安装 Nginx
    windows下nginx的安装及使用方法入门
    linux下nodejs安装以及如何更新到最新的版本
  • 原文地址:https://www.cnblogs.com/wangtianning1223/p/10685823.html
Copyright © 2011-2022 走看看