zoukankan      html  css  js  c++  java
  • Pytorch_5.7 使用重复元素的网络--VGG

    VGG网络

    5.7.1 VGG块

    • VGG引入了Block的概念 作为模型的基础模块
    import time
    import torch
    from torch import nn, optim
    import pytorch_deep as pyd
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def vgg_block(num_convs, in_channels, out_channels):
        blk = []
        for i in range(num_convs):
            if i == 0:
                blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))
            else:
                blk.append(nn.Conv2d(out_channels, out_channels,kernel_size=3, padding=1))
            blk.append(nn.ReLU())
        blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这⾥会使宽⾼减半
        return nn.Sequential(*blk)
    

    实现VGG_11网络

    • 8个卷积层和3个全连接
    def vgg_11(conv_arch, fc_features, fc_hidden_units=4096):
        net = nn.Sequential()
        # 卷积层部分
        for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
            # 每经过⼀个vgg_block都会使宽⾼减半
            net.add_module("vgg_block_" + str(i+1),vgg_block(num_convs, in_channels, out_channels))
        # 全连接层部分
        net.add_module("fc", nn.Sequential(
                        pyd.FlattenLayer(),
                        nn.Linear(fc_features,fc_hidden_units),
                        nn.ReLU(),
                        nn.Dropout(0.5),
                        nn.Linear(fc_hidden_units,fc_hidden_units),
                        nn.ReLU(),
                        nn.Dropout(0.5),
                        nn.Linear(fc_hidden_units, 10)
                        ))
        return net
    
    ratio = 8
    small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio),(2, 128//ratio, 256//ratio),(2, 256//ratio, 512//ratio), (2, 512//ratio,512//ratio)]
    fc_features = 512 * 7 * 7 # c *
    fc_hidden_units = 4096 # 任意
    net = vgg_11(small_conv_arch, fc_features // ratio, fc_hidden_units //ratio)
    print(net)
    
    Sequential(
      (vgg_block_1): Sequential(
        (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_2): Sequential(
        (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_3): Sequential(
        (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_4): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_5): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (fc): Sequential(
        (0): FlattenLayer()
        (1): Linear(in_features=3136, out_features=512, bias=True)
        (2): ReLU()
        (3): Dropout(p=0.5)
        (4): Linear(in_features=512, out_features=512, bias=True)
        (5): ReLU()
        (6): Dropout(p=0.5)
        (7): Linear(in_features=512, out_features=10, bias=True)
      )
    )
    

    训练数据

    batch_size = 32
    # 如出现“out of memory”的报错信息,可减⼩batch_size或resize
    train_iter, test_iter = pyd.load_data_fashion_mnist(batch_size,resize=224)
    lr, num_epochs = 0.001, 5
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
    
    training on  cuda
    epoch 1, loss 0.5166, train acc 0.810, test acc 0.872,time 57.6 sec
    epoch 2, loss 0.1557, train acc 0.887, test acc 0.902,time 57.9 sec
    epoch 3, loss 0.0916, train acc 0.900, test acc 0.907,time 57.7 sec
    epoch 4, loss 0.0609, train acc 0.912, test acc 0.915,time 57.6 sec
    epoch 5, loss 0.0449, train acc 0.919, test acc 0.914,time 57.4 sec
    
    
    
  • 相关阅读:
    java执行shell命令,chmod 777 xxx,改变权限无效的解决办法。
    SpringBoot配置双数据源(一个项目同时连接操作两台数据库)
    《机器学习》周志华西瓜书习题参考答案:第2章
    《机器学习》周志华西瓜书学习笔记(二):模型评估与选择
    只用一套解决方案,就可解决80%的交通物流行业信息难题
    原码、反码、补码
    400+节点的Elasticsearch集群运维
    史上最全PostgreSQL体系结构
    IDEA创建JAVAFX并打包成exe
    DB2 Zos 浅谈
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/13330451.html
Copyright © 2011-2022 走看看