zoukankan      html  css  js  c++  java
  • Pytorch_5.7 使用重复元素的网络--VGG

    VGG网络

    5.7.1 VGG块

    • VGG引入了Block的概念 作为模型的基础模块
    import time
    import torch
    from torch import nn, optim
    import pytorch_deep as pyd
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def vgg_block(num_convs, in_channels, out_channels):
        blk = []
        for i in range(num_convs):
            if i == 0:
                blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))
            else:
                blk.append(nn.Conv2d(out_channels, out_channels,kernel_size=3, padding=1))
            blk.append(nn.ReLU())
        blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这⾥会使宽⾼减半
        return nn.Sequential(*blk)
    

    实现VGG_11网络

    • 8个卷积层和3个全连接
    def vgg_11(conv_arch, fc_features, fc_hidden_units=4096):
        net = nn.Sequential()
        # 卷积层部分
        for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
            # 每经过⼀个vgg_block都会使宽⾼减半
            net.add_module("vgg_block_" + str(i+1),vgg_block(num_convs, in_channels, out_channels))
        # 全连接层部分
        net.add_module("fc", nn.Sequential(
                        pyd.FlattenLayer(),
                        nn.Linear(fc_features,fc_hidden_units),
                        nn.ReLU(),
                        nn.Dropout(0.5),
                        nn.Linear(fc_hidden_units,fc_hidden_units),
                        nn.ReLU(),
                        nn.Dropout(0.5),
                        nn.Linear(fc_hidden_units, 10)
                        ))
        return net
    
    ratio = 8
    small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio),(2, 128//ratio, 256//ratio),(2, 256//ratio, 512//ratio), (2, 512//ratio,512//ratio)]
    fc_features = 512 * 7 * 7 # c *
    fc_hidden_units = 4096 # 任意
    net = vgg_11(small_conv_arch, fc_features // ratio, fc_hidden_units //ratio)
    print(net)
    
    Sequential(
      (vgg_block_1): Sequential(
        (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_2): Sequential(
        (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_3): Sequential(
        (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_4): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (vgg_block_5): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (fc): Sequential(
        (0): FlattenLayer()
        (1): Linear(in_features=3136, out_features=512, bias=True)
        (2): ReLU()
        (3): Dropout(p=0.5)
        (4): Linear(in_features=512, out_features=512, bias=True)
        (5): ReLU()
        (6): Dropout(p=0.5)
        (7): Linear(in_features=512, out_features=10, bias=True)
      )
    )
    

    训练数据

    batch_size = 32
    # 如出现“out of memory”的报错信息,可减⼩batch_size或resize
    train_iter, test_iter = pyd.load_data_fashion_mnist(batch_size,resize=224)
    lr, num_epochs = 0.001, 5
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
    
    training on  cuda
    epoch 1, loss 0.5166, train acc 0.810, test acc 0.872,time 57.6 sec
    epoch 2, loss 0.1557, train acc 0.887, test acc 0.902,time 57.9 sec
    epoch 3, loss 0.0916, train acc 0.900, test acc 0.907,time 57.7 sec
    epoch 4, loss 0.0609, train acc 0.912, test acc 0.915,time 57.6 sec
    epoch 5, loss 0.0449, train acc 0.919, test acc 0.914,time 57.4 sec
    
    
    
  • 相关阅读:
    【C++】对象模型
    【C++多线程】读写锁shared_lock/shared_mutex
    【C++多线程】共享数据的初始化保护
    【C++多线程】共享数据保护
    【C++多线程】lock_guard<T>类和unique_lock<T>类
    【C++多线程】转移线程所有权
    【C++ 】std::ref()和std::cref()
    【C++多线程】传递参数
    【C++多线程】detach()及注意
    linux 打开CHM文件
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/13330451.html
Copyright © 2011-2022 走看看