zoukankan      html  css  js  c++  java
  • Pytorch_模型转Caffe(三)pytorch转caffemodel

    Pytorch_模型转Caffe(三)pytorch转caffemodel

    • 模型转换基于GitHub上xxradon的代码进行优化,在此对作者表示感谢。GitHub地址:https://github.com/xxradon/PytorchToCaffe
    • 本文基于AlexNet网络对MNIST手写字体分类生成的模型*.pth进行转换

    1. Pytorch下生成模型

    • 调用torchvision.models.alexnet下的alexnet网络
    • 修改网络输入层数 1 ,输出类别数量 10
    • classifier下的dropout位置需要调整

    • 通过一下代码训练手写数字识别,最终生成模型mnist_alexnet_model.pth(这里保存了整个网络和权重)
    import time
    import torch
    from torch import nn, optim
    import torchvision
    import pytorch_deep as pyd
    from torchvision.models.alexnet import alexnet
    
    net = alexnet(False)
    device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
    def load_data_fashion_mnist(batch_size = 256,resize=None,num_workers = 0):
        trans = []
        if resize:
            trans.append(torchvision.transforms.Resize(size=resize))
        trans.append(torchvision.transforms.ToTensor())
        transform = torchvision.transforms.Compose(trans)
        mnist_train = torchvision.datasets.FashionMNIST(root='./MNIST', train=True, download=True,
                                                        transform=transform)
        mnist_test = torchvision.datasets.FashionMNIST(root='./MNIST', train=False, download=True,
                                                       transform=transform)
        train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
        test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
        return train_iter,test_iter
    
    batch_size = 128
    # 如出现“out of memory”的报错信息,可减⼩batch_size或resize
    train_iter, test_iter = load_data_fashion_mnist(batch_size,resize=224)
    lr, num_epochs = 0.001, 5
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
    

    2. pth转换成caffemodel和prototxt

    • git clone下载GitHub源码,进入example下的Alexnet实例
    • 主要用到以下两个文件,一个是加载网络模型,一个是进行prototxt和caffemodel的转换
    • 先看alexnet_pytorch_to_caffe.py
    import sys
    sys.path.insert(0,'.')
    import torch
    from torch.autograd import Variable
    from torchvision.models.alexnet import alexnet
    import pytorch_to_caffe_alexNet
    import cv2
    if __name__=='__main__':
        name='alexnet'
        pth_path = '***/mnist_alexnet_model.pth'
        net  = torch.load(pth_path)
        net.eval()
        input=Variable(torch.FloatTensor(torch.ones([1,1,224,224])))
        input = input.cuda()
        pytorch_to_caffe_alexNet.save_prototxt('{}.prototxt'.format(name))
        pytorch_to_caffe_alexNet.save_caffemodel('{}.caffemodel'.format(name))
    
    • 如果直接运行发现会报错,我这里的错误出现在dropout层转化的位置,修改其bottomtop传参
    • 修改完dropout,运行正常,能够生产caffemodel和prototxt,但prototxt网络结构有问题,还是前后层衔接不对
    • 参照原版deploy.prototxt进行layer的修改,最终输出了正确的结果

    3. pytorch_to_caffe_alexNet.py剖析

    • 该文件就是对pth文件进行解析,获得layer的名称和每层的权重偏差,并以caffe的格式进行存储
    • 修改了pytorch Function中的函数,让其在前向传播的时候自动将该层的参数保存到caffe
    • 很多层的前后衔接不对,都需要强制进行修改
    • 下面是修改的部分函数
    def _dropout(raw,input,p=0.5, training=False, inplace=False):
        x=raw(input,p, training, False)
        layer_name=log.add_layer(name='dropout')
        log.add_blobs([x],name='dropout_blob')
        bottom_top_name = 'fc_blob' + layer_name[-1]
        layer=caffe_net.Layer_param(name=layer_name,type='Dropout',
                                    bottom=[bottom_top_name],top=[bottom_top_name])
        layer.param.dropout_param.dropout_ratio = p
        log.cnet.add_layer(layer)
        return x
    def _linear(raw,input, weight, bias=None):
        x=raw(input,weight,bias)
        layer_name=log.add_layer(name='fc')
        top_blobs=log.add_blobs([x],name='fc_blob')
        bottom_name = 'ave_pool_blob1' if top_blobs[-1][-1] =='1' else 'fc_blob'+str(int(top_blobs[-1][-1])-1)
        layer=caffe_net.Layer_param(name=layer_name,type='InnerProduct',
                                    bottom=[bottom_name],top=top_blobs)
        layer.fc_param(x.size()[1],has_bias=bias is not None)
        if bias is not None:
            layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())
        else:
            layer.add_data(weight.cpu().data.numpy())
        log.cnet.add_layer(layer)
        return x
    

    4. 用转换后的模型进行推理

    • 在caffe 下进行测试 test_alexnet.sh
    #!/bin/bash
    set -e
    ./build/examples/cpp_classification/classification.bin 
    /home/****/alexnet.prototxt 
    /home/****/alexnet.caffemodel 
    examples/mnist/mnist_mean.binaryproto 
    examples/mnist/mnist_label.txt 
    data/mnist/1.png;
    

    目前推理结果不太准,但整个过程都已经跑通

    5. prototxt注意问题

    • 推理过程发现每次的结果都不一样,发现prototxt中每个卷积层下都有初始化权重的偏差,将其统统删除

    • 池化层下的 ceil_mode: false也是多余项,删除即可

    至此已完成Pytorch到caffemodle的转换
    这只是初步尝试通过,接下来要进行YOLOv4的转换,应该会遇到更多的问题,加油!

  • 相关阅读:
    感想
    正则表达式
    推送、透传、MQ
    Spring集成Quartz定时任务 ---- 定时执行
    代码优化
    nginx配置详解、端口重定向和504
    JAVA实现EXCEL导出
    js 按需加载
    MyBatis使用(二)分页查询
    MyBatis使用(一)
  • 原文地址:https://www.cnblogs.com/wangxiaobei2019/p/14167822.html
Copyright © 2011-2022 走看看