zoukankan      html  css  js  c++  java
  • save tracking results into csv file for oxuva long-term tracking dataset (from txt to csv)

    save tracking results into csv file for oxuva long-term tracking dataset (from txt to csv)

    2019-10-25 09:42:03

     

    Official Tools: OxUvA long-term tracking benchmark [ECCV'18] [Github

    Project pagehttps://oxuva.github.io/long-term-tracking-benchmark/ 

     

    import os 
    import numpy as np 
    import cv2
    import time
    import oxuva
    import pdb 
    
    # export PYTHONPATH="/home/wangxiao/THOR/long-term-tracking-benchmark-master/python:$PYTHONPATH"
    
    
    # txtPath = '/home/wangxiao/THOR/benchmark/results/OXUVA/Tracker/' 
    # txtFiles = os.listdir(txtPath) 
    
    # csv_path = './oxuva_csv_results/'
    
    # for index in range(len(txtFiles)):
    
    #     txtName = txtFiles[index] 
    #     pointPosition = txtName.find('.')
    #     videoName = txtName[:pointPosition] 
    
    #     preds = np.loadtxt(txtPath + txtName, delimiter=',') 
    #     preds = preds.tolist()
    
    #     spacePosition = txtName.find('_')
    #     if spacePosition: 
    #         obj = 1 
    #     else: 
    #         obj = txtName[spacePosition:spacePosition+1] 
    
    #     preds_file = os.path.join(csv_path, '{}_{}.csv'.format(videoName, obj))
    
    #     tmp_preds_file = os.path.join(csv_path, '{}_{}.csv.tmp'.format(videoName, obj))
    #     with open(tmp_preds_file, 'w', encoding='utf-8-sig') as fp:
    #         pdb.set_trace() 
    
    #         oxuva.dump_predictions_csv(videoName, obj, preds, fp)
    #     os.rename(tmp_preds_file, preds_file)
    
    
    #     pdb.set_trace() 
    
    
    
    
    import json
    import pdb
    import cv2
    import os
    import pandas as pd
    resultpath= '/home/wangxiao/tracking_results_oxuva/' 
    videopath="/home/wangxiao/dataset/OxUvA/images/test/"
    videos=os.listdir(videopath)
    txtFiles = os.listdir(resultpath) 
    
    
    
    
    for i in range(len(videos)):
        txtName = videos[i] + "_oxuva-baseline.txt" 
        preds = np.loadtxt(resultpath + txtName, delimiter=',') 
    
        print("==>> txtName: ", txtName) 
        xmin=[]
        xmax=[]
        ymin=[]
        ymax=[]
        video_ids=[]
        obj_ids=[]
        frame_nums=[]
        presents=[]
        scores=[]
        video_id=videos[i][0:7]
        if(len(videos[i])==7):
            obj_id='obj0000'
        elif(videos[i][-1]=='2'):
            obj_id='obj0001'
        else:
            obj_id='obj0002'
        present='True'
        score=0.5
        # l=result['res']
    
        imgs=os.listdir(videopath+videos[i]+'/')
        imgs = np.sort(imgs) 
        # pdb.set_trace() 
    
        image=cv2.imread(videopath+videos[i]+'/'+imgs[0])
        imgh=image.shape[0]
        imgw=image.shape[1]
    
    
        for j in range(len(imgs)):
    
            # pdb.set_trace() 
    
            x=preds[j][0]
            y=preds[j][1]
            w=preds[j][2]
            h=preds[j][3]
    
            ## results relative to original image size. 
            x1=x/imgw
            x2=(x+w)/imgw
            y1=y/imgh
            y2=(y+h)/imgh
    
            x1=round(x1,4)
            x2=round(x2,4)
            y1=round(y1,4)
            y2=round(y2,4)
    
            frame=imgs[j][0:6]
    
            if(frame=='000000'):
                frame_num=0
            else:
                frame_num=frame.lstrip('0')
    
            xmin.append(x1)
            xmax.append(x2)
            ymin.append(y1)
            ymax.append(y2)
            video_ids.append(video_id)
            obj_ids.append(obj_id)
            frame_nums.append(frame_num)
            presents.append(present)
            scores.append(score)
    
        # pdb.set_trace() 
    
        dataframe=pd.DataFrame({'video_id':video_ids,'object_id':obj_ids,'frame_num':frame_nums,'present':presents,
                                'score':scores,'xmin':xmin,'xmax':xmax,'ymin':ymin,'ymax':ymax})
        savepath='./oxuva_csv_results/' +videos[i][0:7]+'_'+obj_id+'.csv'
        columns=['video_id','object_id','frame_num','present','score','xmin','xmax','ymin','ymax']
    
        dataframe.to_csv(savepath,index=False,columns=columns,header=None)
    
    
        # pdb.set_trace() 

    ========= Results 

    ==

  • 相关阅读:
    多网卡环境下Eureka服务注册IP选择问题
    SpringCloud服务间调用
    Feign性能优化注意事项
    FeignClient使用
    Spring Boot优化
    nginx反向代理 强制https请求
    解决CentOS缺少共享库
    脚本加密http://www.datsi.fi.upm.es/~frosal/sources/
    tar加密
    系统用户在Samba服务器中起一个别名
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/11736019.html
Copyright © 2011-2022 走看看