zoukankan      html  css  js  c++  java
  • 论文笔记之:A CNN Cascade for Landmark Guided Semantic Part Segmentation

     A CNN Cascade for Landmark Guided Semantic Part Segmentation 

    ECCV 2016

     

      摘要:本文提出了一种 CNN cascade (CNN 级联)结构,根据一系列的定位(landmarks or keypoints),得到特定的 pose 信息,进行 语义 part 分割。前人有许多单独的工作,但是,貌似没有将这两个工作结合到一起,相互作用的 multi-task 的工作。本文就弥补这个缺口,提出一种 CNN cascade 的 tasks,首先进行 landmark的定位,然后将这个信息作为输入,用于指导 semantic part segmentation。作者将这个结构用于 facial part segmentation,取得了显著的效果。代码将会很快放出,候选连接如下:http://www.cs.nott.ac.uk/~psxasj/ 

     

        引言:就像摘要里提到的差不多,就是这个意思。不废话了。看看效果图,然后看看别人怎么做的。。。

     

        本文的创新点写的很有特色,说解决了下面的两个问题:

      1. Is a CNN for facial part segmentation needed at all ?

      2. Can facial landmarks be used for guiding facial part segmentation, thus reversing the result metioned above ? 

     

     

      

     

     

     

     

     


        The Proposed Method : 

      本文提出的 CNN 级联网络结构,如上图 4 所示,是一个 landmark localisation 网络,紧跟着是一个 facial part segmentation 网络结构。这个级联网络是基于 VGG-FCN 的,基于 CAFFE ,主要由两个部分构成:

      1. 利用交叉熵损失函数(Sigmoid Cross Entropy Loss)进行 facial landmarks 的检测,这是一个 FCN 网络;

      2. 第二,是受到 human pose estimation method 【1】 的激发,检测到的 68 个定位点,编码成 68 个单独的 channels,这个 channels 在其对应的 landmark 位置有一个 2D Gaussian 。这 68 个channels 堆积在一起,和原始图像一起传送给 segmentation network。然后用标准的 Softmax loss 进行分割。

      这里的【1】是:Human pose estimation with iterative error feedback. CVPR 2016 

      接下来,详细的介绍这两个网络架构:

      

      Facial Landmark Detection

      对于 landmark detection 的训练过程类似于训练一个 FCN 用于 part segmentation。将 Landmarks 编码成位于提供的 landmarks' location 的 2D Gaussian。每一个 landmark 分配其单独的 channel 来阻止与其他 landmark 的重合,允许每一个 point 更加容易相互区分。与 part segmentation 主要的不同在于 其 loss function。Sigmoid Cross Entropy Loss 被用来回归一个像素点包含一个 point 的可能性。More concretely,给定我们的 gt Gaussians P 和 预测的 Gaussians p, 每一个相同维度是 N*W*H, 定义的损失函数为:

       Guided Facial Part Segmentation

       采用和 FCN 类似的配置方法进行分割,利用 softmax loss 作为最后的损失函数。如果 N 是输出的个数,$p_{i, j}$ 是像素点$(i, j)$的预测输出,n 是 gt label,那么 softmax loss l 就可以表达为:

        下面的表格展示了所用的 VGG-FCN 网络结构的具体参数设置:

     

     

      Reference Paper:

      1. Human pose estimation with iterative error feedback. CVPR 2016 

      2. A CNN Cascade for Landmark Guided Semantic Part Segmentation 

      

     

     

     

     

     

  • 相关阅读:
    iOS
    iOS
    iOS
    Xcodeproject详解
    Swift
    iOS
    iOS
    错误 1 无法将文件“objDebugXXX.exe”复制到“binDebugXXX.exe”。文件“binDebugXXX.exe”正由另一进程使用,因此该进程无法访问该文件
    【转载】SQL注入原理讲解
    在“安装”阶段发生异常。 System.Security.SecurityException: 未找到源,但未能
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5931578.html
Copyright © 2011-2022 走看看