-
tensorflow.initialize_all_variables
已改为tensorflow.global_variables_initializer()
-
AttributeError: module ‘tensorflow.python.training.training’ has no attribute ‘SummaryWriter’
tf.train.SummaryWriter已废除
使用 tf.train.summary.FileWriter -
AttributeError: module ‘tensorflow’ has no attribute ‘sub’
减法
tf.sub()
已改为tf.subtract()
-
参考:http://blog.csdn.NET/edwards_june/article/details/65652385
-
前4个是 V0.11 的API 用在 V1.0 的错误
5.1. AttributeError: 'module' object has no attribute 'merge_all_summaries'
>> tf.merge_all_summaries() 改为:summary_op = tf.summary.merge_all()
5.2. AttributeError: 'module' object has no attribute 'SummaryWriter'
>> tf.train.SummaryWriter 改为:tf.summary.FileWriter
5.3. AttributeError: 'module' object has no attribute 'scalar_summary'
>> tf.scalar_summary 改为:tf.summary.scalar
5.4. AttributeError: 'module' object has no attribute 'histogram_summary'
>> histogram_summary 改为:tf.summary.histogram下边这个是 V1.0 的API 用在 V0.11 的错误File "dis-alexnet_benchmark.py", line 110, in alexnet_v2biases_initializer=tf.zeros_initializer(),TypeError: zeros_initializer() takes at least 1 argument (0 given)>> 将 biases_initializer=tf.zeros_initializer() 改为:biases_initializer=tf.zeros_initialize -
程序 """ Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly. """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # from tensorflow.examples.tutorials.mnist import input_data # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None,): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b,) return outputs def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) # add output layer prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax) # the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # loss train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() # important step tf.global_variables_initializer() for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))