zoukankan      html  css  js  c++  java
  • 阿里电话面试问题----100万个URL如何找到出现频率最高的前100个?

    内推阿里电话面试中面试官给我出的一个题:

    我想的头一个解决方案,就是放到stl 的map里面对出现的频率作为pair的第二个字段进行排序,之后按照排序结果返回:

    下面口说无凭,show your code,当然在讨论帖子中遭遇了工程界大牛的sql代码在技术上的碾压。什么是做工程的,什么是工程师的思维,不要一味的埋头搞算法。


    讨论帖:

    http://bbs.csdn.net/topics/391080906


    python 抓取百度搜索结果的讨论贴:

    http://bbs.csdn.net/topics/391077668


    实验数据,python从百度抓得:

    # -*- coding: utf-8 -*-
    """
    Spyder Editor
    
    This is a temporary script file.
    """
    
    
    import urllib2 
    import re 
    import os
    
    #connect to a URL 
    #一页的搜索结果中url大概是200个左右
    file_url = open('url.txt','ab+')
    #搜索框里的东西,这块可以设置成数字好让每次搜索的结果不一样
    search = '123'
    url = "http://www.baidu.com/s?wd="+search
    
    
    def setUrlToFile():
        website = urllib2.urlopen(url) 
        #read html code 
    
        html = website.read() 
    
        #use re.findall to get all the links 
    
        links = re.findall('"((http|ftp)s?://.*?)"', html)
     
    
        for s in links:
            print s[0]
            if len(s[0]) < 256:
                file_url.write(s[0]+'
    ')
        
    #收集实验数据
    for i in range(0,50):
        setUrlToFile()
    
    file_url.close()
    
    
    ###需要重新打开再读一下
    file_url = open('url.txt','r')
    file_lines = len(file_url.readlines())
    print "there are %d url in %s" %(file_lines,file_url)
    file_url.close()
    
    

    方法1:

    c++  写的读 url.txt放到map里面

    对map<string , int>的value进行排序,得到前100个

    运行一下也就55s,还是很快的,url长度进行了限制小于256个字符


    #pragma once
    /*
    //计算代码段运行时间的类
    //
    */
    #include <iostream>
    
    #ifndef ComputeTime_h
    #define ComputeTime_h
    
    
    //单位毫秒
    
    class   ComputeTime    
    {  
    private:  
    	int Initialized;  
    	__int64 Frequency;  
    	__int64 BeginTime;  
    		    
    public:  
    
    	bool Avaliable();  
    	double End();  
    	bool Begin();  
    	ComputeTime();  
    	virtual   ~ComputeTime();    
    
    };  
    
    
    
    
    
    
    #endif
    #include "stdafx.h"
    #include "ComputeTime.h"
    #include <iostream>
    #include <Windows.h>
    
    ComputeTime::ComputeTime()  
    {  
    	Initialized=QueryPerformanceFrequency((LARGE_INTEGER   *)&Frequency);  
    }  
       
     ComputeTime::~ComputeTime()  
    {  
    		    
    }  
       
     bool   ComputeTime::Begin()  
    {  
    	if(!Initialized)  
    		return 0;
    
    	 return   QueryPerformanceCounter((LARGE_INTEGER   *)&BeginTime);  
     }
         
     double   ComputeTime::End()
    {  
    	 if(!Initialized)  
    		return 0;
    
    		   
    	 __int64   endtime;  
    		   
    	 QueryPerformanceCounter((LARGE_INTEGER   *)&endtime);  
    		    
    		  
    	 __int64   elapsed = endtime-BeginTime;  
    		    
    		  
    	 return   ((double)elapsed/(double)Frequency)*1000.0;  //单位毫秒
     }  
    
     bool   ComputeTime::Avaliable()
    {  
    	 return Initialized;  
    }   
    
    
    // sortUrl.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    //#include <utility>    
    #include <vector>
    #include <map>
    #include <fstream>
    #include <iostream>
    #include <string>
    #include <algorithm>
    #include "ComputeTime.h"
    
    using namespace std;
    
    map<string,int> urlfrequency;
    
    
    typedef pair<string, int> PAIR;
    
    
    struct CmpByValue 
    {
    	bool operator()(const PAIR& lhs, const PAIR& rhs) 
    	{
    		return lhs.second > rhs.second;
    	}
    };
    
    void find_largeTH(map<string,int> urlfrequency)
    {
    	//把map中元素转存到vector中 ,按照value排序
    	vector<PAIR> url_quency_vec(urlfrequency.begin(), urlfrequency.end());
    	sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue());
    	//url_quency_vec.size()
    	for (int i = 0; i != 100; ++i) 
    	{
    		cout<<url_quency_vec[i].first<<endl;
    		cout<<url_quency_vec[i].second<<endl;
    	}
    }
    
    
    //urlheap的建立过程,URL插入时候存在的
    void insertUrl(string url)
    {
    	pair<map<string ,int>::iterator, bool> Insert_Pair;
    	Insert_Pair = urlfrequency.insert(map<string, int>::value_type(url,1));
    
    
    
    	if (Insert_Pair.second == false)
    	{
    		(Insert_Pair.first->second++);
    	}
    	
    
    }
    
    
    int _tmain(int argc, _TCHAR* argv[])
    {
    	fstream URLfile;
    	char buffer[1024]; 
    	URLfile.open("url.txt",ios::in|ios::out|ios::binary);
    
    	if (! URLfile.is_open())  
    	{ cout << "Error opening file"; exit (1); } 
    	else
    	{
    	cout<<"open file success!"<<endl;
    	}
    
    	ComputeTime cp;
    	cp.Begin();
    	int i = 0;
    	 while (!URLfile.eof())  
    	{  
    	URLfile.getline (buffer,1024);  
    	//cout << buffer << endl;  
    	string temp(buffer);
    	//cout<<i++<<endl;
    	insertUrl(temp);
    	}  
    	      
    
    
    	find_largeTH(urlfrequency);
    
    	cout<<"running time: "<<cp.End()<<"ms"<<endl;
    
    	getchar();
    	//system("pause");
    	return 0;
    }
    
    



    实验结果:55s还不算太差,可以接受,毕竟是头脑中的第一个解决方案。



    方法2:

    hash code 版本,只是不知道怎么 hash和url关联起来:


    // urlFind.cpp : 定义控制台应用程序的入口点。
    //
    
    // sortUrl.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
     
    #include <vector>
    #include <map>
    #include <fstream>
    #include <iostream>
    #include <string>
    #include <algorithm>
    #include <unordered_map>
    #include "ComputeTime.h"
    
    using namespace std;
    
    map<unsigned int,int> urlhash;
    
    
    typedef pair<unsigned int, int> PAIR;
    
    
    struct info{
    	string url;
    	int cnt;
    	bool operator<(const info &r) const {
    		return cnt>r.cnt;
    	}
    };
    
    
    unordered_map<string,int> count;
    
    //priority_queue<info> pq;
    
    
    struct CmpByValue 
    {
    	bool operator()(const PAIR& lhs, const PAIR& rhs) 
    	{
    		return lhs.second > rhs.second;
    	}
    };
    
    void find_largeTH(map<unsigned int,int> urlhash)
    {
    	//把map中元素转存到vector中 ,按照value排序
    	vector<PAIR> url_quency_vec(urlhash.begin(), urlhash.end());
    	sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue());
    	//url_quency_vec.size()
    	for (int i = 0; i != 100; ++i) 
    	{
    		cout<<url_quency_vec[i].first<<endl;
    		cout<<url_quency_vec[i].second<<endl;
    	}
    }
    
    
    // BKDR Hash Function
    unsigned int BKDRHash(char *str)
    {
    	unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    	unsigned int hash = 0;
    
    	while (*str)
    	{
    		hash = hash * seed + (*str++);
    	}
    
    	return (hash & 0x7FFFFFFF);
    }
    
    //
    void insertUrl(string url)
    {
    
    	unsigned int hashvalue = BKDRHash((char *)url.c_str());
    	pair<map<unsigned int ,int>::iterator, bool> Insert_Pair;
    	Insert_Pair = urlhash.insert(map<unsigned int, int>::value_type(hashvalue,1));
    
    	if (Insert_Pair.second == false)
    	{
    		(Insert_Pair.first->second++);
    	}
    
    
    }
    
    
    int _tmain(int argc, _TCHAR* argv[])
    {
    	fstream URLfile;
    	char buffer[1024]; 
    	URLfile.open("url.txt",ios::in|ios::out|ios::binary);
    
    	if (! URLfile.is_open())  
    	{ cout << "Error opening file"; exit (1); } 
    	else
    	{
    		cout<<"open file success!"<<endl;
    	}
    
    	ComputeTime cp;
    	cp.Begin();
    	int i = 0;
    	while (!URLfile.eof())  
    	{  
    		URLfile.getline (buffer,1024);  
    		//cout << buffer << endl;  
    		string temp(buffer);
    		//cout<<i++<<endl;
    		insertUrl(temp);
    	}  
    
    
    
    	find_largeTH(urlhash);
    
    	cout<<"running time: "<<cp.End()<<"ms"<<endl;
    
    	getchar();
    	//system("pause");
    	return 0;
    }
    
    
    
    


    性能15秒左右:缺点在于没有把hashcode和url进行关联,技术的处理速度已经非常可观了


    方法3:

    下面用STL的hash容器unordered_map,和优先队列(就是堆)来实现这个问题。


    // urlFind.cpp : 定义控制台应用程序的入口点。
    //
    
    // sortUrl.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
     
    #include <vector>
    #include <map>
    #include <fstream>
    #include <iostream>
    #include <string>
    #include <algorithm>
    #include <unordered_map>
    #include <queue>
    #include "ComputeTime.h"
    
    using namespace std;
    
    
    typedef pair<string, int> PAIR;
    
    
    struct info
    {
    	string url;
    	int cnt;
    	bool operator<(const info &r) const
    	{
    		return cnt<r.cnt;
    	}
    };
    
    
    unordered_map<string,int> hash_url;
    
    priority_queue<info> pq;
    
    
    
    void find_largeTH(unordered_map<string,int> urlhash)
    {
    
    	unordered_map<string,int>::iterator iter = urlhash.begin();
    	info temp;
    	for (; iter!= urlhash.end();++iter)
    	{
    		temp.url = iter->first;
    		temp.cnt = iter->second;
    		pq.push(temp);
    	}
    
    	for (int i = 0; i != 100; ++i) 
    	{
    
    		cout<<pq.top().url<<endl;
    		cout<<pq.top().cnt<<endl;
    		pq.pop();
    	}
    }
    
    
    
    void insertUrl(string url)
    {
    
    	pair<unordered_map<string ,int>::iterator, bool> Insert_Pair;
    	Insert_Pair = hash_url.insert(unordered_map<string, int>::value_type(url,1));
    
    	if (Insert_Pair.second == false)
    	{
    		(Insert_Pair.first->second++);
    	}
    
    }
    
    int _tmain(int argc, _TCHAR* argv[])
    {
    	fstream URLfile;
    	char buffer[1024]; 
    	URLfile.open("url.txt",ios::in|ios::out|ios::binary);
    
    	if (! URLfile.is_open())  
    	{ cout << "Error opening file"; exit (1); } 
    	else
    	{
    		cout<<"open file success!"<<endl;
    	}
    
    	ComputeTime cp;
    	cp.Begin();
    	int i = 0;
    	while (!URLfile.eof())  
    	{  
    		URLfile.getline (buffer,1024);  
    		//cout << buffer << endl;  
    		string temp(buffer);
    		//cout<<i++<<endl;
    		insertUrl(temp);
    	}  
    
    	find_largeTH(hash_url);
    
    	cout<<"running time: "<<cp.End()<<"ms"<<endl;
    
    	getchar();
    	//system("pause");
    	return 0;
    }
    
    

    基本上算是算法里面比较优秀的解决方案了,面试官如果能听到这个方案应该会比较欣喜。

    
    


    方法4:实验耗时未知,技术上碾压了上述解决方案,中高年轻人,不要重复造轮子!哈哈

    数据库,SQL语句:

    load data infile "d:/bigdata.txt" into table tb_url(url);
    
    SELECT
    	url,
    	count(url) as show_count
    	FROM
    	tb_url
    	GROUP BY url
    	ORDER BY show_count desc
    	LIMIT 100

    
    
    
  • 相关阅读:
    Spring05_基于注解的IOC和DI
    Spring02_基于XML的IOC
    Spring01_概述及程序的耦合
    设计模式六、单例模式
    设计模式五,建造者模式
    前后端分离异常统一处理
    vue qs.stringify 和JSON.stringify 区别
    设计模式四、抽象工厂模式
    设计模式三、工厂方法模式
    设计模式二、简单工厂模式——静态工厂模式
  • 原文地址:https://www.cnblogs.com/wangyaning/p/7853946.html
Copyright © 2011-2022 走看看