zoukankan      html  css  js  c++  java
  • 实验6-使用TensorFlow完成线性回归

    一、环境

    tensorflow2.3.1   matplotlib-1.5.1  numpy-1.18.5 python3.5

    二、代码

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    plt.rcParams["figure.figsize"] = (14,8)
    
    n_observations = 100
    xs = np.linspace(-3, 3, n_observations)
    ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
    plt.scatter(xs, ys)
    plt.show()
    X = tf.placeholder(tf.float32, name='X')
    Y = tf.placeholder(tf.float32, name='Y')
    W = tf.Variable(tf.random_normal([1]), name='weight')
    b = tf.Variable(tf.random_normal([1]), name='bias')
    Y_pred = tf.add(tf.multiply(X, W), b)
    
    loss = tf.square(Y - Y_pred, name='loss')
    
    learning_rate = 0.01
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    n_samples = xs.shape[0]
    with tf.Session() as sess:
        # 记得初始化所有变量
        sess.run(tf.global_variables_initializer())
    
        writer = tf.summary.FileWriter('./graphs/linear_reg', sess.graph)
    
        # 训练模型
        for i in range(50):
            total_loss = 0
            for x, y in zip(xs, ys):
                # 通过feed_dic把数据灌进去
                _, l = sess.run([optimizer, loss], feed_dict={X: x, Y: y})
                total_loss += l
            if i % 5 == 0:
                print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
    
        # 关闭writer
        writer.close()
    
        # 取出w和b的值
        W, b = sess.run([W, b])
    print(W,b)
    print("W:"+str(W[0]))
    print("b:"+str(b[0]))
    plt.plot(xs, ys, 'bo', label='Real data')
    plt.plot(xs, xs * W + b, 'r', label='Predicted data')
    plt.legend()
    plt.show()
    View Code

    三、运行结果

    四、遇到的问题

    4.1 numpy.core.umath failed to import   

    numpy版本问题。我的解决方法是安装最新版本的 numpy

     在Anaconda Prompt的tensorflow模式下输入以下两条命令

    pip uninstall numpy
    pip install numpy

    4.2 No module named 'tensorflow‘  

    配置python解释器的问题

    选择Anaconda下的envs ersorflowpython.exe

     

     

     

  • 相关阅读:
    P2813 母舰
    P5367 【模板】康托展开
    P1816 忠诚
    P3865 【模板】ST表
    P1913 L国的战斗之伞兵
    P4939 Agent2
    P1894 [USACO4.2]完美的牛栏The Perfect Stall
    P5017 摆渡车
    P1330 封锁阳光大学
    P5018 对称二叉树
  • 原文地址:https://www.cnblogs.com/wangzhaojun1670/p/14639717.html
Copyright © 2011-2022 走看看