zoukankan      html  css  js  c++  java
  • 实验6-使用TensorFlow完成线性回归

    一、环境

    tensorflow2.3.1   matplotlib-1.5.1  numpy-1.18.5 python3.5

    二、代码

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    plt.rcParams["figure.figsize"] = (14,8)
    
    n_observations = 100
    xs = np.linspace(-3, 3, n_observations)
    ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
    plt.scatter(xs, ys)
    plt.show()
    X = tf.placeholder(tf.float32, name='X')
    Y = tf.placeholder(tf.float32, name='Y')
    W = tf.Variable(tf.random_normal([1]), name='weight')
    b = tf.Variable(tf.random_normal([1]), name='bias')
    Y_pred = tf.add(tf.multiply(X, W), b)
    
    loss = tf.square(Y - Y_pred, name='loss')
    
    learning_rate = 0.01
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    n_samples = xs.shape[0]
    with tf.Session() as sess:
        # 记得初始化所有变量
        sess.run(tf.global_variables_initializer())
    
        writer = tf.summary.FileWriter('./graphs/linear_reg', sess.graph)
    
        # 训练模型
        for i in range(50):
            total_loss = 0
            for x, y in zip(xs, ys):
                # 通过feed_dic把数据灌进去
                _, l = sess.run([optimizer, loss], feed_dict={X: x, Y: y})
                total_loss += l
            if i % 5 == 0:
                print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
    
        # 关闭writer
        writer.close()
    
        # 取出w和b的值
        W, b = sess.run([W, b])
    print(W,b)
    print("W:"+str(W[0]))
    print("b:"+str(b[0]))
    plt.plot(xs, ys, 'bo', label='Real data')
    plt.plot(xs, xs * W + b, 'r', label='Predicted data')
    plt.legend()
    plt.show()
    View Code

    三、运行结果

    四、遇到的问题

    4.1 numpy.core.umath failed to import   

    numpy版本问题。我的解决方法是安装最新版本的 numpy

     在Anaconda Prompt的tensorflow模式下输入以下两条命令

    pip uninstall numpy
    pip install numpy

    4.2 No module named 'tensorflow‘  

    配置python解释器的问题

    选择Anaconda下的envs ersorflowpython.exe

     

     

     

  • 相关阅读:
    在C#中如何使用资源的方法
    C#调用windows API的一些方法
    Uml学习-类图简介
    Uml学习-用例建模简介
    sqlserver中DATE类型的数据转化 CONVERT
    mysql database和schema区别
    nginx buffer
    django pk 和id用法
    sed正则
    kong 插件开发分析
  • 原文地址:https://www.cnblogs.com/wangzhaojun1670/p/14639717.html
Copyright © 2011-2022 走看看