zoukankan      html  css  js  c++  java
  • 实验6-使用TensorFlow完成线性回归

    一、环境

    tensorflow2.3.1   matplotlib-1.5.1  numpy-1.18.5 python3.5

    二、代码

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    plt.rcParams["figure.figsize"] = (14,8)
    
    n_observations = 100
    xs = np.linspace(-3, 3, n_observations)
    ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
    plt.scatter(xs, ys)
    plt.show()
    X = tf.placeholder(tf.float32, name='X')
    Y = tf.placeholder(tf.float32, name='Y')
    W = tf.Variable(tf.random_normal([1]), name='weight')
    b = tf.Variable(tf.random_normal([1]), name='bias')
    Y_pred = tf.add(tf.multiply(X, W), b)
    
    loss = tf.square(Y - Y_pred, name='loss')
    
    learning_rate = 0.01
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    n_samples = xs.shape[0]
    with tf.Session() as sess:
        # 记得初始化所有变量
        sess.run(tf.global_variables_initializer())
    
        writer = tf.summary.FileWriter('./graphs/linear_reg', sess.graph)
    
        # 训练模型
        for i in range(50):
            total_loss = 0
            for x, y in zip(xs, ys):
                # 通过feed_dic把数据灌进去
                _, l = sess.run([optimizer, loss], feed_dict={X: x, Y: y})
                total_loss += l
            if i % 5 == 0:
                print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
    
        # 关闭writer
        writer.close()
    
        # 取出w和b的值
        W, b = sess.run([W, b])
    print(W,b)
    print("W:"+str(W[0]))
    print("b:"+str(b[0]))
    plt.plot(xs, ys, 'bo', label='Real data')
    plt.plot(xs, xs * W + b, 'r', label='Predicted data')
    plt.legend()
    plt.show()
    View Code

    三、运行结果

    四、遇到的问题

    4.1 numpy.core.umath failed to import   

    numpy版本问题。我的解决方法是安装最新版本的 numpy

     在Anaconda Prompt的tensorflow模式下输入以下两条命令

    pip uninstall numpy
    pip install numpy

    4.2 No module named 'tensorflow‘  

    配置python解释器的问题

    选择Anaconda下的envs ersorflowpython.exe

     

     

     

  • 相关阅读:
    MongoDB 基本概念
    MongoDB 设置参数
    MongoDB 操作数据库
    MongoDB 目录分析、基础命令、参数设置
    Windows下MongoDB的下载安装、环境配置
    MongoDB 简介
    SQL与NoSQL
    es6 箭头函数(arrow function) 学习笔记
    WebPack 简明学习教程
    vue自定义指令
  • 原文地址:https://www.cnblogs.com/wangzhaojun1670/p/14639717.html
Copyright © 2011-2022 走看看