zoukankan      html  css  js  c++  java
  • 高阶导数求解法

    今天总结一下近十几年做的真题中不熟练(主要是出现的少不经常写淦)的模块。都是基础中的基础要稳妥拿下。

    image.png

    其中强调:必记公式为(2)和(4),然后泰勒公式法常常用来求具体点高阶导数【真题经常用】。该知识点如果考察则必考在填空题中,复习时容易忽视,这里总结题型掌握方法即可。

    一、公式法

    1、题目一

    image.png

    2、题目二

    image.png

    3、题目三

    image.png

    4、题目四

    image.png

    5、题目五

    本题已经属于考试水准的中等题目了,一定掌握,且要遇见幂函数要敏感

    image.png

    6、题目六

    image.png

    【要求】:对公式(4)的变形要敏感,并且(2)、(4)公式需要反复记忆。

    二、归纳法

    1、题目一

    image.png

    【要求】:通常不会太难,只需要多写出几项变可以总结出规律,当然能用公式法就用公式法,如果考试紧张忘记则归纳即可。

    三、泰勒公式法

    1、题目一

    image.png

    【要求】:一般是求解具体点,并且常常搭配e^x和ln(1+x)的泰勒展开使用。小心n的次数!!!

    四、真题解析

    1、数二2007

    image.png

    显然归纳法求解过于麻烦了,如果牢记公式(4),本题一行出结果。

    2、数二2010

    image.png

    显然归纳法和泰勒法都过于麻烦了,如果记得公式(4),本题先求导,则一行出结果

    3、数二2015

    image.png

    显然用泰勒是个好办法,但是还可以用公式法更快解决,且不易出错

    image.png

    总结:很久未出题了,但是需要牢牢把握,能用公式法就用公式法,但需要每天给予一定记忆,如果忘了或者无法使用就老老实实找规律归纳和泰勒。

  • 相关阅读:
    Quartz任务调度(3)存储与持久化操作配置详细解
    Quartz任务调度(2)CronTrigger定制个性化调度方案
    Quartz任务调度(1)概念例析快速
    Mybatis Generator最完整配置详解
    SpringMVC之@ControllerAdvice
    文件上传api——MultipartFile
    Springboot使用MatrixVariable 注解
    p命名空间和c命名空间
    SpringBoot配置Cors跨域请求
    SpringBoot五步配置Mybatis
  • 原文地址:https://www.cnblogs.com/wangzheming35/p/13968112.html
Copyright © 2011-2022 走看看