4152: [AMPPZ2014]The Captain
Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 2107 Solved: 820
[Submit][Status][Discuss]
Description
给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。
Input
第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],y[i](0<=x[i],y[i]<=10^9),依次表示每个点的坐标。
Output
一个整数,即最小费用。
Sample Input
5
2 2
1 1
4 5
7 1
6 7
2 2
1 1
4 5
7 1
6 7
Sample Output
2
HINT
Source
Solution
这道题本身很简单,分别按$x$、$y$排序相邻间建边跑最短路就可以了,可是这道题卡$Spfa$,可以用$Dijistra$,这里学习了一种玄学(?)优化
SLF优化$Spfa$,如果当前加入的点$dis$比队首小就放到队首,其它照常放在队尾,最优可以卡到$O(nlog_n)$
Code
#include<bits/stdc++.h> #define LL long long using namespace std; const int N = 200000; struct ED { int v, nex, w; } Edge[800008]; int h[200006], stot; void add(int u, int v, int w) { Edge[++stot].v = v, Edge[stot].nex = h[u], Edge[stot].w = w; h[u] = stot; } int n; struct Node { int x, y, id; } a[200005]; bool cmp1(Node a, Node b) { if(a.x == b.x) return a.y < b.y; return a.x < b.x;} bool cmp2(Node a, Node b) { if(a.y == b.y) return a.x < b.x; return a.y < b.y;} LL dis[200005]; int vis[200005], q[200005]; void spfa() { memset(dis, 0x3f3f3f3f, sizeof(dis)); vis[1] = 1; dis[1] = 0; int s = 1, t = 0, tot = 1; q[++t] = 1; while(tot) { int x = q[s]; tot --; s = (s + 1) % N; vis[x] = 0; for(int i = h[x]; i; i = Edge[i].nex) { int v = Edge[i].v; if(dis[v] > dis[x] + Edge[i].w) { dis[v] = dis[x] + Edge[i].w; if(!vis[v]) { vis[v] = 1; tot ++; if(dis[v] <= dis[q[s]]) { s = (s - 1 + N) % N; q[s] = v; } else { t = (t + 1) % N; q[t] = v; } } } } } } int main() { scanf("%d", &n); for(int i = 1; i <= n; i ++) scanf("%d%d", &a[i].x, &a[i].y), a[i].id = i; sort(a + 1, a + 1 + n, cmp1); for(int i = 1; i < n; i ++) { int a1 = a[i].x, a2 = a[i + 1].x, b1 = a[i].y, b2 = a[i + 1].y; add(a[i].id, a[i + 1].id, a2 - a1); add(a[i + 1].id, a[i].id, a2 - a1); } sort(a + 1, a + 1 + n, cmp2); for(int i = 1; i < n; i ++) { int a1 = a[i].x, a2 = a[i + 1].x, b1 = a[i].y, b2 = a[i + 1].y; add(a[i].id, a[i + 1].id, b2 - b1); add(a[i + 1].id, a[i].id, b2 - b1); } spfa(); printf("%lld", dis[n]); return 0; }