https://vjudge.net/problem/19685/origin
费马小定理优化快速幂
因为加了费马小定理优化,小心2 2 2这种情况,会出现0 0 2,也就是0的0次方,实际答案为0
#include <iostream> #include <cstdio> #include <queue> #include <algorithm> #include <cmath> #include <cstring> #define inf 2147483647 #define N 47000 #define p(a) putchar(a) #define For(i,a,b) for(long long i=a;i<=b;++i) using namespace std; long long T; long long x,y,m,cnt; long long prime[N]; bool vis[N]; void in(long long &x){ long long y=1;char c=getchar();x=0; while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();} while(c<='9'&&c>='0'){ x=(x<<1)+(x<<3)+c-'0';c=getchar();} x*=y; } void o(long long x){ if(x<0){p('-');x=-x;} if(x>9)o(x/10); p(x%10+'0'); } long long ksm(long long a,long long b){ long long r=1; while(b>0){ if(b&1) r=r*a%m; a=a*a%m; b>>=1; } return r; } void Euler(){ vis[1]=1; For(i,2,N){ if(!vis[i]) prime[++cnt]=i; for(long long j=1;j<=cnt&&i*prime[j]<=N;j++){ vis[i*prime[j]]=1; if(i%prime[j]==0) break; } } } int main(){ Euler(); while(scanf("%lld%lld%lld",&x,&y,&m)!=EOF){ x%=m; if(!vis[m]) y%=m-1; if(!x&&!y) y=1; o(ksm(x,y));p(' '); } return 0; }