zoukankan      html  css  js  c++  java
  • JDK(四)JDK1.8源码分析【排序】DualPivotQuicksort

    本文转载自于晓飞93,原文链接 DualPivotQuickSort 双轴快速排序 源码 笔记

    DualPivotQuicksort是Arrays类中提供的给基本类型的数据排序的算法。它针对每种基本数据类型都有对应的实现,实现方式有细微差异,但思路都是相同的,所以这里只挑选int类型的排序。

    整个实现中的思路是:首先检查数组的长度,比一个阈值小的时候直接使用双轴快排。其它情况下,先检查数组中数据的顺序连续性。把数组中连续升序或者连续降序的信息记录下来,顺便把连续降序的部分倒置。这样数据就被切割成一段段连续升序的数列。

    如果顺序连续性好,直接使用TimSort算法。TimSort算法的核心在于利用数列中的原始顺序,所以可以提高很多效率。

    顺序连续性不好的数组直接使用了 双轴快排 + 成对插入排序。成对插入排序是插入排序的改进版,它采用了同时插入两个元素的方式调高效率。双轴快排是从传统的单轴快排到3-way快排演化过来的。参考:QUICKSORTING - 3-WAY AND DUAL PIVOT

    final class DualPivotQuicksort {
    
        /**
         * Prevents instantiation.
         */
        private DualPivotQuicksort() {}
    
        /**
         * 待合并的序列的最大数量
         * The maximum number of runs in merge sort.
         */
        private static final int MAX_RUN_COUNT = 67;
    
        /**
         * 待合并的序列的最大长度
         * The maximum length of run in merge sort.
         */
        private static final int MAX_RUN_LENGTH = 33;
    
        /**
         * 如果参与排序的数组长度小于这个值,优先使用快速排序而不是归并排序
         * If the length of an array to be sorted is less than this
         * constant, Quicksort is used in preference to merge sort.
         */
        private static final int QUICKSORT_THRESHOLD = 286;
    
        /**
         * 如果参与排序的数组长度小于这个值,优先考虑插入排序,而不是快速排序
         * If the length of an array to be sorted is less than this
         * constant, insertion sort is used in preference to Quicksort.
         */
        private static final int INSERTION_SORT_THRESHOLD = 47;
    
        /**
         * Sorts the specified range of the array using the given
         * workspace array slice if possible for merging
         *
         * @param a the array to be sorted
         * @param left the index of the first element, inclusive, to be sorted
         * @param right the index of the last element, inclusive, to be sorted
         * @param work a workspace array (slice)
         * @param workBase origin of usable space in work array
         * @param workLen usable size of work array
         */
        static void sort(int[] a, int left, int right,
                         int[] work, int workBase, int workLen) {
            // Use Quicksort on small arrays
            if (right - left < QUICKSORT_THRESHOLD) {
                sort(a, left, right, true);
                return;
            }
    
            /*
             * run[i] 意味着第i个有序数列开始的位置,(升序或者降序)
             * Index run[i] is the start of i-th run
             * (ascending or descending sequence).
             */
            int[] run = new int[MAX_RUN_COUNT + 1];
            int count = 0; run[0] = left;
    
            // 检查数组是不是已经接近有序状态
            // Check if the array is nearly sorted
            for (int k = left; k < right; run[count] = k) {
                if (a[k] < a[k + 1]) { // ascending 升序
                    while (++k <= right && a[k - 1] <= a[k]);
                } else if (a[k] > a[k + 1]) { // descending 降序
                    while (++k <= right && a[k - 1] >= a[k]);
                    // 如果是降序的,找出k之后,把数列倒置
                    for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                        int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                    }
                } else { // equal 相等
                    for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                        // 数列中有至少MAX_RUN_LENGTH的数据相等的时候,直接使用快排
                        if (--m == 0) {
                            sort(a, left, right, true);
                            return;
                        }
                    }
                }
    
                /*
                 * 数组并非高度有序,使用快速排序,因为数组中有序数列的个数超过了MAX_RUN_COUNT
                 * The array is not highly structured,
                 * use Quicksort instead of merge sort.
                 */
                if (++count == MAX_RUN_COUNT) {
                    sort(a, left, right, true);
                    return;
                }
            }
    
            // 检查特殊情况
            // Check special cases
            // Implementation note: variable "right" is increased by 1.
            if (run[count] == right++) { // The last run contains one element   // 最后一个有序数列只有最后一个元素
                run[++count] = right;   // 那给最后一个元素的后面加一个哨兵
            } else if (count == 1) { // The array is already sorted // 整个数组中只有一个有序数列,说明数组已经有序啦,不需要排序了
                return;
            }
    
            // Determine alternation base for merge
            byte odd = 0;
            for (int n = 1; (n <<= 1) < count; odd ^= 1);
    
            // 创建合并用的临时数组
            // Use or create temporary array b for merging
            int[] b;                 // temp array; alternates with a
            int ao, bo;              // array offsets from 'left'
            int blen = right - left; // space needed for b
            if (work == null || workLen < blen || workBase + blen > work.length) {
                work = new int[blen];
                workBase = 0;
            }
            if (odd == 0) {
                System.arraycopy(a, left, work, workBase, blen);
                b = a;
                bo = 0;
                a = work;
                ao = workBase - left;
            } else {
                b = work;
                ao = 0;
                bo = workBase - left;
            }
    
            // 合并
            // 最外层循环,直到count为1,也就是栈中待合并的序列只有一个的时候,标志合并成功
            // a 做原始数组,b 做目标数组
            // Merging
            for (int last; count > 1; count = last) {
                // 遍历数组,合并相邻的两个升序序列
                for (int k = (last = 0) + 2; k <= count; k += 2) {
                    // 合并run[k-2] 与 run[k-1]两个序列
                    int hi = run[k], mi = run[k - 1];
                    for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                        if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                            b[i + bo] = a[p++ + ao];
                        } else {
                            b[i + bo] = a[q++ + ao];
                        }
                    }
                    // 这里把合并之后的数列往前移动
                    run[++last] = hi;
                }
                // 如果栈的长度为奇数,那么把最后落单的有序数列copy过对面
                if ((count & 1) != 0) {
                    for (int i = right, lo = run[count - 1]; --i >= lo;
                        b[i + bo] = a[i + ao]
                    );
                    run[++last] = right;
                }
                // 临时数组,与原始数组对调,保持a做原始数组,b 做目标数组
                int[] t = a; a = b; b = t;
                int o = ao; ao = bo; bo = o;
            }
        }
    
        /**
         * Sorts the specified range of the array by Dual-Pivot Quicksort.
         *
         * @param a the array to be sorted
         * @param left the index of the first element, inclusive, to be sorted
         * @param right the index of the last element, inclusive, to be sorted
         * @param leftmost indicates if this part is the leftmost in the range
         */
        private static void sort(int[] a, int left, int right, boolean leftmost) {
            int length = right - left + 1;
    
            // 小数组使用插入排序
            // Use insertion sort on tiny arrays
            if (length < INSERTION_SORT_THRESHOLD) {
                if (leftmost) {
                    /*
                     * 经典的插入排序算法,不带哨兵。做了优化,在leftmost情况下使用
                     * Traditional (without sentinel) insertion sort,
                     * optimized for server VM, is used in case of
                     * the leftmost part.
                     */
                    for (int i = left, j = i; i < right; j = ++i) {
                        int ai = a[i + 1];
                        while (ai < a[j]) {
                            a[j + 1] = a[j];
                            if (j-- == left) {
                                break;
                            }
                        }
                        a[j + 1] = ai;
                    }
                } else {
                    /*
                     * 首先跨过开头的升序的部分
                     * Skip the longest ascending sequence.
                     */
                    do {
                        if (left >= right) {
                            return;
                        }
                    } while (a[++left] >= a[left - 1]);
    
                    /*
                     * 这里用到了成对插入排序方法,它比简单的插入排序算法效率要高一些
                     * 因为这个分支执行的条件是左边是有元素的
                     * 所以可以直接从left开始往前查找
                     *
                     * Every element from adjoining part plays the role
                     * of sentinel, therefore this allows us to avoid the
                     * left range check on each iteration. Moreover, we use
                     * the more optimized algorithm, so called pair insertion
                     * sort, which is faster (in the context of Quicksort)
                     * than traditional implementation of insertion sort.
                     */
                    for (int k = left; ++left <= right; k = ++left) {
                        int a1 = a[k], a2 = a[left];
    
                        // 保证a1>=a2
                        if (a1 < a2) {
                            a2 = a1; a1 = a[left];
                        }
                        // 先把两个数字中较大的那个移动到合适的位置
                        while (a1 < a[--k]) {
                            a[k + 2] = a[k];    // 这里每次需要向左移动两个元素
                        }
                        a[++k + 1] = a1;
    
                        // 再把两个数字中较小的那个移动到合适的位置
                        while (a2 < a[--k]) {
                            a[k + 1] = a[k];    // 这里每次需要向左移动一个元素
                        }
                        a[k + 1] = a2;
                    }
                    int last = a[right];
    
                    while (last < a[--right]) {
                        a[right + 1] = a[right];
                    }
                    a[right + 1] = last;
                }
                return;
            }
    
            // length / 7 的一种低复杂度的实现, 近似值(length * 9 / 64 + 1)
            // Inexpensive approximation of length / 7
            int seventh = (length >> 3) + (length >> 6) + 1;
    
            /*
             * 对5段靠近中间位置的数列排序,这些元素最终会被用来做轴(下面会讲)
             * 他们的选定是根据大量数据积累经验确定的
             *
             * Sort five evenly spaced elements around (and including) the
             * center element in the range. These elements will be used for
             * pivot selection as described below. The choice for spacing
             * these elements was empirically determined to work well on
             * a wide variety of inputs.
             */
            int e3 = (left + right) >>> 1; // The midpoint // 中间值
            int e2 = e3 - seventh;
            int e1 = e2 - seventh;
            int e4 = e3 + seventh;
            int e5 = e4 + seventh;
    
            // 插入排序
            // Sort these elements using insertion sort
            if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
    
            if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
            if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
            if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
                if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                    if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                        if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                    }
                }
            }
    
            // 指针
            // Pointers
            int less  = left;  // The index of the first element of center part // 中间区域的首个元素的位置
            int great = right; // The index before the first element of right part //右边区域的首个元素的位置
    
            if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
                /*
                 * 使用5个元素中的2,4两个位置,他们两个大致处在四分位的位置上
                 * 需要注意的是pivot1 <= pivot2
                 *
                 * Use the second and fourth of the five sorted elements as pivots.
                 * These values are inexpensive approximations of the first and
                 * second terciles of the array. Note that pivot1 <= pivot2.
                 */
                int pivot1 = a[e2];
                int pivot2 = a[e4];
    
                /*
                 * The first and the last elements to be sorted are moved to the
                 * locations formerly occupied by the pivots. When partitioning
                 * is complete, the pivots are swapped back into their final
                 * positions, and excluded from subsequent sorting.
                 * 第一个和最后一个元素被放到两个轴所在的位置。当阶段性的分段结束后
                 * 他们会被分配到最终的位置并从子排序阶段排除
                 */
                a[e2] = a[left];
                a[e4] = a[right];
    
                /*
                 * Skip elements, which are less or greater than pivot values.
                 * 跳过一些队首的小于pivot1的值,跳过队尾的大于pivot2的值
                 */
                while (a[++less] < pivot1);
                while (a[--great] > pivot2);
    
                /*
                 * Partitioning:
                 *
                 *   left part           center part                   right part
                 * +--------------------------------------------------------------+
                 * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
                 * +--------------------------------------------------------------+
                 *               ^                          ^       ^
                 *               |                          |       |
                 *              less                        k     great
                 *
                 * Invariants:
                 *
                 *              all in (left, less)   < pivot1
                 *    pivot1 <= all in [less, k)     <= pivot2
                 *              all in (great, right) > pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak < pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        /*
                         * Here and below we use "a[i] = b; i++;" instead
                         * of "a[i++] = b;" due to performance issue.
                         * 这里考虑的好细致,"a[i] = b; i++"的效率要好过
                         * 'a[i++] = b'
                         */
                        a[less] = ak;
                        ++less;
                    } else if (ak > pivot2) { // Move a[k] to right part
                        while (a[great] > pivot2) {
                            if (great-- == k) { // k遇到great本次分割
                                break outer;
                            }
                        }
                        if (a[great] < pivot1) { // a[great] <= pivot2
                            a[k] = a[less];
                            a[less] = a[great];
                            ++less;
                        } else { // pivot1 <= a[great] <= pivot2
                            a[k] = a[great];
                        }
                        /*
                         * Here and below we use "a[i] = b; i--;" instead
                         * of "a[i--] = b;" due to performance issue.
                         * 同上,用"a[i]=b;i--"代替"a[i--] = b"
                         */
                        a[great] = ak;
                        --great;
                    }
                } // 分割阶段结束出来的位置,上一个outer结束的位置
    
                // 把两个放在外面的轴放回他们应该在的位置上
                // Swap pivots into their final positions
                a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
                a[right] = a[great + 1]; a[great + 1] = pivot2;
    
                // 把左边和右边递归排序,跟普通的快速排序差不多
                // Sort left and right parts recursively, excluding known pivots
                sort(a, left, less - 2, leftmost);
                sort(a, great + 2, right, false);
    
                /*
                 * If center part is too large (comprises > 4/7 of the array),
                 * swap internal pivot values to ends.
                 * 如果中心区域太大,超过数组长度的 4/7。就先进行预处理,再参与递归排序
                 * 预处理的方法是把等于pivot1的元素统一放到左边,等于pivot2的元素统一
                 * 放到右边,最终产生一个不包含pivot1和pivot2的数列,再拿去参与快排中的递归
                 */
                if (less < e1 && e5 < great) {
                    /*
                     * Skip elements, which are equal to pivot values.
                     */
                    while (a[less] == pivot1) {
                        ++less;
                    }
    
                    while (a[great] == pivot2) {
                        --great;
                    }
    
                    /*
                     * Partitioning:
                     *
                     *   left part         center part                  right part
                     * +----------------------------------------------------------+
                     * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                     * +----------------------------------------------------------+
                     *              ^                        ^       ^
                     *              |                        |       |
                     *             less                      k     great
                     *
                     * Invariants:
                     *
                     *              all in (*,  less) == pivot1
                     *     pivot1 < all in [less,  k)  < pivot2
                     *              all in (great, *) == pivot2
                     *
                     * Pointer k is the first index of ?-part.
                     */
                    outer:
                    for (int k = less - 1; ++k <= great; ) {
                        int ak = a[k];
                        if (ak == pivot1) { // Move a[k] to left part
                            a[k] = a[less];
                            a[less] = ak;
                            ++less;
                        } else if (ak == pivot2) { // Move a[k] to right part
                            while (a[great] == pivot2) {
                                if (great-- == k) {
                                    break outer;
                                }
                            }
                            if (a[great] == pivot1) { // a[great] < pivot2
                                a[k] = a[less];
                                /*
                                 * Even though a[great] equals to pivot1, the
                                 * assignment a[less] = pivot1 may be incorrect,
                                 * if a[great] and pivot1 are floating-point zeros
                                 * of different signs. Therefore in float and
                                 * double sorting methods we have to use more
                                 * accurate assignment a[less] = a[great].
                                 */
                                a[less] = pivot1;
                                ++less;
                            } else { // pivot1 < a[great] < pivot2
                                a[k] = a[great];
                            }
                            a[great] = ak;
                            --great;
                        }
                    } // outer结束的位置
                }
    
                // Sort center part recursively
                sort(a, less, great, false);
    
            } else { // Partitioning with one pivot // 这里选取的5个元素刚好相等,使用传统的3-way快排
                /*
                 * Use the third of the five sorted elements as pivot.
                 * This value is inexpensive approximation of the median.
                 * 在5个元素中取中值
                 */
                int pivot = a[e3];
    
                /*
                 * Partitioning degenerates to the traditional 3-way
                 * (or "Dutch National Flag") schema:
                 *
                 *   left part    center part              right part
                 * +-------------------------------------------------+
                 * |  < pivot  |   == pivot   |     ?    |  > pivot  |
                 * +-------------------------------------------------+
                 *              ^              ^        ^
                 *              |              |        |
                 *             less            k      great
                 *
                 * Invariants:
                 *
                 *   all in (left, less)   < pivot
                 *   all in [less, k)     == pivot
                 *   all in (great, right) > pivot
                 *
                 * Pointer k is the first index of ?-part.
                 */
                for (int k = less; k <= great; ++k) {
                    if (a[k] == pivot) {
                        continue;
                    }
                    int ak = a[k];
                    if (ak < pivot) { // Move a[k] to left part // 把a[k]移动到左边去,把center区向右滚动一个单位
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else { // a[k] > pivot - Move a[k] to right part // 把a[k]移动到右边
                        while (a[great] > pivot) {  // 先找到右边最后一个比pivot小的值
                            --great;
                        }
                        if (a[great] < pivot) { // a[great] <= pivot    把他移到左边
                            a[k] = a[less];
                            a[less] = a[great];
                            ++less;
                        } else { // a[great] == pivot   //如果相等,中心区直接扩展
                            /*
                             * Even though a[great] equals to pivot, the
                             * assignment a[k] = pivot may be incorrect,
                             * if a[great] and pivot are floating-point
                             * zeros of different signs. Therefore in float
                             * and double sorting methods we have to use
                             * more accurate assignment a[k] = a[great].
                             * 这里因为是整型值,所以a[k] == a[less] == pivot
                             */
                            a[k] = pivot;
                        }
                        a[great] = ak;
                        --great;
                    }
                }
    
                /*
                 * Sort left and right parts recursively.
                 * All elements from center part are equal
                 * and, therefore, already sorted.
                 * 左右两边还没有完全排序,所以递归解决
                 * 中心区只有一个值,不再需要排序
                 */
                sort(a, left, less - 1, leftmost);
                sort(a, great + 1, right, false);
            }
        }
    }
  • 相关阅读:
    golang与vscode的安装与配置
    numpy学习之前的必要数学知识:线性代数
    分布式系统设计系列 -- 基本原理及高可用策略
    微服务的4个设计原则和19个解决方案
    JAVA8 十大新特性详解
    ConcurrentHashMap总结
    Java NIO理解与使用
    深入了解 Java-Netty高性能高并发理解
    java内存泄漏的定位与分析
    Netty高性能编程备忘录(下)
  • 原文地址:https://www.cnblogs.com/warehouse/p/9343195.html
Copyright © 2011-2022 走看看