zoukankan      html  css  js  c++  java
  • 【Bzoj3527】【Luogu3338】[Zjoi2014]力(FFT)

    题面

    Bzoj

    Luogu

    题解

    先来颓柿子

    $$ F_i=sum_{j<i}frac{q_iq_j}{(i-j)^2}-sum_{j>i}frac{q_iq_j}{(i-j)^2} \=q_i(sum_{j<i}frac{q_j}{(i-j)^2}-sum_{j>i}frac{q_j}{(i-j)^2}) $$

    所以

    $$ E_i=sum_{j<i}frac{q_j}{(i-j)^2}-sum_{j>i}frac{q_j}{(j-i)^2} $$

    令$x_i=frac{1}{i^2}$

    则原式可化为:

    $$ E_i=sum_{j=0}^{i}q_jx_{i-j}-sum_{j=i+1}^{n-1}q_jx_{j-i} $$

    令$p_{n-j-1}=q_j$所以原式又等于

    $$ E_i=sum_{j=0}^{i}q_jx_{i-j}-sum_{j=i}^{n-1}p_{n-j-1}x_{j-i} \=sum_{j=0}^{i}q_jx_{i-j}-sum_{j=0}^{n-i-1}p_{n-j-i-1}x_{j} $$

    然后就变成两个卷积相减了吧。(为了方便,先将$n$减去$1$):

    #include <cmath>
    #include <cstdio>
    #include <algorithm>
    using std::swap;
    
    const int N = 3e5 + 10;
    const double Pi = acos(-1);
    int n, m, r[N], P;
    struct C { double x, y; } q[N], p[N], x[N];
    C operator + (C a, C b) { return (C){ a.x + b.x, a.y + b.y }; }
    C operator - (C a, C b) { return (C){ a.x - b.x, a.y - b.y }; }
    C operator * (C a, C b) { return (C){ a.x * b.x - a.y * b.y, a.x * b.y + b.x * a.y }; }
    
    void FFT(C f[], int opt) {
        for(int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
        for(int len = 1, nl = 2; len < n; len = nl, nl <<= 1) {
            C rot = (C){cos(Pi / len), opt * sin(Pi / len)};
            for(int l = 0; l < n; l += nl) {
                C w = (C){1, 0}; int r = l + len;
                for(int k = l; k < r; ++k, w = w * rot) {
                    C x = f[k], y = w * f[k + len];
                    f[k] = x + y, f[k + len] = x - y;
                }
            }
        }
    } 
    
    int main() {
        scanf("%d", &n); int tmp = (--n); m = n << 1;
        for(int i = 0; i <= n; ++i) scanf("%lf", &q[i].x), p[n - i].x = q[i].x;
        for(int i = 1; i <= n; ++i) x[i].x = (double)1.0 / i / i;
        for(n = 1; n <= m; n <<= 1, ++P);
        for(int i = 0; i < n; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
        FFT(q, 1), FFT(p, 1), FFT(x, 1);
        for(int i = 0; i < n; ++i) q[i] = q[i] * x[i], p[i] = p[i] * x[i];
        FFT(q, -1), FFT(p, -1);
        for(int i = 0; i <= tmp; ++i)
            printf("%.3lf
    ", q[i].x / n - p[tmp - i].x / n);
        return 0;
    }
    
  • 相关阅读:
    微信小程序开发入门(二)
    微信小程序开发入门(一)
    django入门与实践(续)
    django入门与实践(开)
    Python六剑客
    python入门(二十讲):爬虫
    python入门(十九讲):多进程
    ES6箭头函数
    ES6
    数据库常用命令
  • 原文地址:https://www.cnblogs.com/water-mi/p/10198655.html
Copyright © 2011-2022 走看看