题意
给定$n$个软件包,每个软件包都有一个依赖软件包,安装一个软件包必须安装他的依赖软件包,卸载一个软件包必须先卸载所有依赖于它的软件包。给定$m$此操作,每次一个操作$install/unistall$表示安装或者卸载。
题解
可以通过简单画图看出,在这个树形结构的依赖层次图上,安装一个包相当于安装其到根节点路径上的所有包,删除一个包相当于删除其与其子树的包。用一个重链剖分+线段树处理一下就行了。
#include <cstdio>
#include <algorithm>
using std::swap;
typedef long long ll;
const int N = 1e5 + 10;
int n, Q, x, ans;
int fa[N], dep[N], siz[N], son[N];
int top[N], dfn[N], time;
int cnt, from[N], to[N], nxt[N];
int bui[N << 2], set[N << 2];
inline void addEdge(int u, int v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
void dfs1(int u) {
siz[u] = 1, dep[u] = dep[fa[u]] + 1;
for (int i = from[u]; i; i = nxt[i]) {
int v = to[i]; dfs1(v), siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int t) {
dfn[u] = ++time, top[u] = t;
if(!son[u]) return ; dfs2(son[u], t);
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(v == son[u]) continue;
dfs2(v, v);
}
}
void modify(int sl, int sr, int k, int o = 1, int l = 1, int r = n) {
int len = r - l + 1;
if(l >= sl && r <= sr) {
if(k == 1) ans += len - bui[o], bui[o] = len;
else ans += bui[o], bui[o] = 0;
set[o] = k;
return ;
}
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
if(set[o]) {
if(set[o] == 1) bui[lc] = (len - (len >> 1)), bui[rc] = (len >> 1);
else bui[lc] = bui[rc] = 0;
set[lc] = set[rc] = set[o], set[o] = 0;
}
if(sl <= mid) modify(sl, sr, k, lc, l, mid);
if(sr > mid) modify(sl, sr, k, rc, mid + 1, r);
bui[o] = bui[lc] + bui[rc];
}
inline void ins(int x) {
int fx = top[x];
while (fx != 1) modify(dfn[fx], dfn[x], 1), x = fa[fx], fx = top[x];
modify(1, dfn[x], 1);
}
int main () {
scanf("%d", &n);
for (int i = 2; i <= n; ++i) {
scanf("%d", fa + i), ++fa[i];
addEdge(fa[i], i);
}
dfs1(1), dfs2(1, 1);
scanf("%d", &Q);
char opt[12];
while(Q--) {
scanf("
%s%d", opt, &x), ans = 0, ++x;
if(opt[0] == 'i') ins(x);
else modify(dfn[x], dfn[x] + siz[x] - 1, -1);
printf("%d
", ans);
}
return 0;
}