zoukankan      html  css  js  c++  java
  • 利用皮尔逊相关系数找出与目标最相关的特征(Python实现)

    #coding:utf-8
    #检测各特征和辐照度之间的相关性以及各个特征之间的相关性
    from __future__ import division
    import tensorflow as tf
    import math
    import csv
    from sklearn import metrics
    import numpy as np
    from math import sqrt
    from math import sqrt
    from sklearn import preprocessing
    i=0
    j=[]
    data = []
    X = []
    list=['0','1','2','3','4','5','6']
    #with open('D:/辐照度数据表/day_winter.csv') as f:
    with open(r'D:夏季.csv') as f:
    reader = csv.reader(f)
    for row in reader:
    if i == 0:
    i += 1
    continue
    else:
    data.append(row[:])
    data = np.array(data)
    print("the shape of data",np.shape(data))
    m,n = np.shape(data)
    print("the shape of data",m,n)
    for i in range(m):
    for j in range(n):
    data[i][j] = data[i][j].astype('float64')
    y = data[:,-1]
    y1 = data[:,-1]
    set2 = data[:,-1]
    print("*******************************************************")
    file = open("E:/predict_pierxun1.txt", 'a')
    file.write(" "+" ")
    file.write(" 雨天天气下各特征与辐照度的相关系数 "+" ")
    file.write("———————————————————————————————————"+" ")
    for i in range(12):
    set1 = data[:, i]
    set1 = set1.astype('float64')
    set2 = set2.astype('float64')
    fenzi = sum((set1 - np.mean(set1)) * (set2 - np.mean(set2)))
    fenmu1 = sqrt(sum(pow((set1 - np.mean(set1)), 2)))
    fenmu2 = sqrt(sum(pow((set2 - np.mean(set2)), 2)))
    jieguo = fenzi / (fenmu1 * fenmu2)
    jieguo1.append(jieguo)
    print("*******************************************************")
    jieguo2 = dict(map(lambda x,y:[x,y],list,jieguo1))
    jieguo3 = dict(map(lambda x,y:[x,abs(y)],list,jieguo1))
    def fun(s):
    d = sorted(s.items(), key=lambda t: t[1], reverse=True)
    return d
    file.write("重要特征排序(按相关系数值的绝对值从大到小): "+" ")
    d = fun(jieguo2)
    d1 = fun(jieguo3)
    for f in range(7):
    print("%d. feature %s (%f)" % (f + 1, d1[f][0], d1[f][1]))
    file.write(str(d1[f][0])+" ")
    file.write(" ")
    ————————————————
    版权声明:本文为CSDN博主「simple_hututu」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/pwtd_huran/article/details/79729029

  • 相关阅读:
    Spark源码编译cannot resolve symbol SqlBaseParser
    教你一招 如何给nopcommerce增加新闻类别模块
    网银在线插件 For Nopcommerce V2.6
    nopcommerce之移动版简介
    支付宝插件 For Nopcommerce V2.6
    PropertyInfo
    Druid 连接MySql
    docker中 启动所有的容器命令 关闭所有的容器命令
    Watermarker详解
    kafka 参数设置
  • 原文地址:https://www.cnblogs.com/wcxia1985/p/14807547.html
Copyright © 2011-2022 走看看