zoukankan      html  css  js  c++  java
  • 关于Cococs中的CCActionEase

    尊重作者劳动,转载时请标明文章出处。
    作者:Bugs Bunny
    地址:http://www.cnblogs.com/cocos2d-x/archive/2012/03/13/2393898.html

    本文函数图像使用GeoGebra绘制,感谢它才华横溢的作者。

    为了方便用户灵活地控制精灵运动,cocos2d-x提供了CCActionEase类系的动作。它们拥有相似的名字——CCEaseXxxxIn、CCEaseXxxxOut、CCEaseXxxxInOut,同时也拥有相似的行为——速度由慢至快、速度由快至慢、速度先由慢至快再由快至慢。但是除了这些,我们对CCActionEase一无所知。就算查阅参考手册,我们能得到的信息也不过是类似Ease Sine In的简短说明。它们究竟是什么模样,我们该如何选择?

    今天我们就来解决这个问题。鉴于CCActionEase类系的庞大,文章可能会分成两到三篇。

    1)CCEaseSineIn

    在《cocos2d-x动作系统浅析》一文中提到:
    update函数接受一个百分比参数,它表示动作的完成进度。update根据这个百分比将目标对象做出相应的调整。
    可以说这个update函数就是CCActionEase的灵魂。

    1 void CCEaseSineIn::update(ccTime time)
    2 {
    3 m_pOther->update(-1 * cosf(time * (float)M_PI_2) + 1);
    4 }

    之前我们已经知道CCActionEase类系的动作就是调整其他动作的速度,变换出新的效果。这里的m_pOther就是那个被影响的动作,而一切魔力的源头就在它接受的参数上。CCEaseSineIn将传入的百分比参数进行了一系列变换,然后传给了m_pOther。

    我们将这个变换公式提取出来,记作:
    f(x)=1-cos(π/2*x) x∈[0,1]
    这个就是已用时间百分比与实际完成进度的关系。在匀速运动中,它们应该是相等的,但是在变速运动中,它们的关系就会变幻莫测。

    上图中的黑色曲线就是f(x)的函数图像。它的定义域从0开始,到1结束,值域也是这样。根据这条线的走势,可以粗略看出速度是越变越快的,但还是不够形象。
    在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。如果我们能得到这条瞬时速度的曲线,那就直观多了。上面的函数f(x)是已用时间百分比与实际完成进度的关系,这里可以近似地理解为时间与路程的关系。
    所以我们对f(x)求导,得出:
    f'(x)=π/2*sin(π/2*x) x∈[0,1]
    它对应图中那条红色曲线。可以很明显地看出,速度越变越快,在C点达到了最高。
    正如它名字说的那样,它的速度由慢至快,呈正弦变化。

    2)CCEaseSineOut

    我们再来看下CCEaseSineOut类。

    1 void CCEaseSineOut::update(ccTime time)
    2 {
    3 m_pOther->update(sinf(time * (float)M_PI_2));
    4 }

    同理得出:
    f(x)=sin(π/2*x) x∈[0,1]
    f'(x)=π/2*cos(π/2*x)

    同样我们更关注那条红色曲线,它从最高点C出发,一路下降到达A点。这表明在CCEaseSineOut动作中,速度是越来越慢的,它的图像也呈正弦变化。

    3)CCEaseSineInOut

    我们知道CCEaseXxxxInOut的速度变化是先由慢至快,再由快至慢。如果我们将上面两个图像拼在一起,然后在将横轴比例缩小一倍,那结果就是这条曲线的模样了。
    一般情况下,我们需要将函数分成两段,第一段在0到0.5之间,第二段在0.5到1之间。我们来看看CCEaseSineInOut是如何实现的。

    1 void CCEaseSineInOut::update(ccTime time)
    2 {
    3 m_pOther->update(-0.5f * (cosf((float)M_PI * time) - 1));
    4 }

    f(x)=-0.5*(cos(π*x)-1) x∈[0,1]
    f'(x)=π/2*sin(π*x)

    在CCEaseSineInOut中,这两段曲线正好是同一个函数(非分段函数)的图像。很巧妙是不是?
    图中红色曲线从原点O出发,一路上升到达最高点C,然后又一路下滑降至D点。它同样也是一条正弦变化的曲线。动作的速度看起来就是由慢至快,再由快至慢的。

    小结

    CCEaseSineIn、CCEaseSineOut、CCEaseSineInOut这三个动作同属速度正弦变化,变化的范围是[0,π/2]。

    4)CCEaseExponentialIn

    有了前面的经验,后面就容易多了,先来看一下CCEaseExponentialIn的update函数。

    1 void CCEaseExponentialIn::update(ccTime time)
    2 {
    3 m_pOther->update(time == 0 ? 0 : powf(2, 10 * (time/1 - 1)) - 1 * 0.001f);
    4 }

    大家可能已经注意到,这里使用了一个条件运算符,于是表达式变作了分段函数。
    当x=0时,f(x)=0
    当x∈(0,1]时,f(x)=2^(10*(x-1))-0.001

    注意这条不是速度的曲线。
    上面副绘图区中的图像就是这个函数的整体走势,我们在主绘图区给原点附近的曲线一个特写。可以看到,除了x=0的情况,曲线与x轴还有一个交点。
    对2^(10*(x-1))-0.001=0求解,得出:
    x=1-ln(1000)/(10*ln(2))=0.00342

    现在我们开始在脑中想象一下精灵按照CCEaseExponentialIn动作移动的详细步骤。
    首先,时间从零开始,精灵被设置到起始位置。这一步是正常的没有问题。
    接下来,精灵猛地朝着反方向跳动了很小的一段距离。这个距离是非常非常小的,也就是图上的B点附近,大约只占整个移动距离的0.00234%
    然后,精灵开始以变化的速度朝着目标点移动。经过点A时精灵回到初始位置。这时,我们设计的运动才刚刚开始。
    如果我们将x=1代入公式,可以推算出:
    f(x)=1-0.001=0.999
    也就是说,图像最终没有到达终点,而是差了一小段距离。

    简单来说,总时间的前0.342%部分以及最终的那一瞬间的运动是不太正常的。
    如果你设计了一个超过1000秒的运动,那么前3秒内,精灵的准确位置不会在你设计的轨迹上。
    当然如果想观察到这个问题,运动的距离也是一个关键。
    假设你疯狂地设计了一个运动10万像素的精灵,并且运动时间超过1000秒,那你就能观察到这一现象了。3秒钟,反向2个像素。

    但是为什么会这样呢?是引擎的bug吗?
    确切来说,这应该算不上是bug,这只是精度引起的问题。

    下面这段都是我自己的推测,也就是猜到,大家看看就好了。
    我猜测这个公式的最初原型应该是:
    f(x)=2^(10*(x-1)) x∈[0,1]
    但是它有一个问题,那就是当x=0的时候,f(0)=1/1024
    时间为零的时候,精灵大约就已经有了千分之一的位移,而且是在一个物体运动刚开始的时候,猛然地跳动是非常明显的。所以设计者将千分之一的误差移动到了末尾,也就是运动要结束的时候。
    那公式现在的样子就是:
    f(x)=2^(10*(x-1))-1/1024 x∈[0,1]

    大家都知道cocos2d-x多使用单精度浮点型数字,以及写0.0009765625f比较麻烦等诸多因素,最后这个公式就简化成了现在的模样。

    我的猜想说完了,我们接着来求导:
    f'(x)=10*2^(10*(x-1))*ln(2) x∈[0,1]

    按照最理想的那个公式绘制出图像,这里我们只看那条红色的曲线。这条曲线从D点开始一路上升,迅速到达C点。如果你对它再次求导,就能得出其加速度的变化规律。从DC曲线上应该可以看出其加速度也是越来越大的。
    额,说得有点儿远了。我们把注意力先集中起来,计算出速度的最小值和最大值。
    f'(0)=10*2^(-10)*ln(2)=0.006769
    f'(1)=10*2^0*ln(2)=6.931472

    CCEaseExponentialIn的速度由慢至快,从0.006769上升至6.931472,呈指数级变化。

    5)CCEaseExponentialOut

    1 void CCEaseExponentialOut::update(ccTime time)
    2 {
    3 m_pOther->update(time == 1 ? 1 : (-powf(2, -10 * time / 1) + 1));
    4 }

    CCEaseExponentialOut与CCEaseExponentialIn的实现是相似的,唯一的不同是CCEaseExponentialOut在最后一瞬间会有短距离的跳跃(千分之一的误差),而CCEaseExponentialIn是舍弃部分。个人认为CCEaseExponentialOut的处理方式更合理些。
    好了直接上图

    这里没有难点,我直接让工具生成的导函数图像。
    我们关心的是A点(0,6.93147)和D点(1,0.00677),与CCEaseExponentialIn的速度范围是一样的。从6.93147下降至0.00677,速度为由快至慢的指数变化。

    6)CCEaseExponentialInOut

    在《知易游戏开发教程cocos2d-x移植版003》中有一段CCEaseExponentialInOut的演示代码,测试运行时会发现精灵最后以极快的速度飞出了屏幕,是笔者使用不当,还是别的什么原因?当时由于时间、精力的问题没有深入研究,今天借此机会将问题分析一下。

    复制代码
     1 void CCEaseExponentialInOut::update(ccTime time)
    2 {
    3 time /= 0.5f;
    4 if (time < 1)
    5 {
    6 time = 0.5f * powf(2, 10 * (time - 1));
    7 }
    8 else
    9 {
    10 time = 0.5f * (-powf(2, 10 * (time - 1)) + 2);
    11 }
    12
    13 m_pOther->update(time);
    14 }
    复制代码

    呵呵,典型的分段函数。绘制函数图像如下:

    图中这条蓝色的曲线就是CCEaseExponentialInOut使用的分段函数。很明显可以看到在A点处,曲线走向发生了90°的变化,向着点(1,-511)延伸。它没有像前面说过的函数那样逼近点C(1,1),这就解释了为什么精灵莫名其妙地飞出了屏幕。

    这是一个bug,我们希望曲线的后半段能像那条绿色的曲线AC那样。(我只在Win32平台上测试的,不知其他平台上是否也存在这个问题,有兴趣的朋友可以测试下。)

    我的修改如下:

    复制代码
     1 void CCEaseExponentialInOut::update(ccTime time)
    2 {
    3 time /= 0.5f;
    4 if (time < 1)
    5 {
    6 time = 0.5f * powf(2, 10 * (time - 1));
    7 }
    8 else
    9 {
    10 // 将(time - 1)变作(1 - time)
    11 time = 0.5f * (-powf(2, 10 * (1 - time)) + 2);
    12 }
    13
    14 m_pOther->update(time);
    15 }
    复制代码

    修正后,动作的行为正常了。
    对新的函数求导,得出图中的红色曲线。其中点D、点E、点F的坐标分别为(0.5,6.93147)、(0,0.00677)、(1,0.00677)。
    细心的朋友可能已经发现了点C没有到达(1,1)。是的,这里存在0.000488的误差,曲线的起始点也一样。即原来1/1024的误差被平分到了开头和末尾。

    小结

    CCEaseExponentialIn、CCEaseExponentialOut、CCEaseExponentialInOut这三个动作同属速度指数级变化,变化的范围是[0.00677,6.93147]。

  • 相关阅读:
    产品经理职责
    Python基础知识之:字符串拼接
    Python基础知识之:hello world,注释,变量,数据类型
    Python初接触
    系统测试基础大纲
    编程零基础应当如何开始学习 Python?
    可以用 Python 编程语言做哪些神奇好玩的事情?
    江湖二三事:听说你想做数据分析师?
    “羊车门”问题
    用Turtle画正螺旋线
  • 原文地址:https://www.cnblogs.com/wdd-123/p/4821442.html
Copyright © 2011-2022 走看看