zoukankan      html  css  js  c++  java
  • 统计_多重检验_LSD方法不准确性(python代码实现)

    机器学习,统计项目联系:QQ231469242

    #mental
    group1=[2,2,3,4,4,5,3,4,4,4]
    #physical
    group2=[4,4,3,5,4,1,1,2,3,3]
    #medical
    group3=[1,2,2,2,3,2,3,1,3,1]

    多重检验结果和贾俊平的LSD结果不一样,经过T配对试验,多重检验和T配对试验一致,LSD对小样本可能不准确

    # -*- coding: utf-8 -*-
    
    # Import standard packages
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import stats
    import pandas as pd
    import os
    # additional packages
    import sys
    sys.path.append(os.path.join('..', '..', 'Utilities'))
    
    try:
    # Import formatting commands if directory "Utilities" is available
        from ISP_mystyle import showData 
        
    except ImportError:
    # Ensure correct performance otherwise
        def showData(*options):
            plt.show()
            return
         
    
    # Other required packages
    from statsmodels.stats.multicomp import (pairwise_tukeyhsd,
                                             MultiComparison)
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    from statsmodels.stats.libqsturng import psturng
    
    
    def setData():
        ''' Set up the data, as a structured array. '''
        
        # The first and last field are 32-bit intergers; the second field is an
        # 8-byte string. Note that here we can also give names to the individual
        # fields!
        data = np.rec.array([
        (  1,   'mental',  2 ),
        (  2,   'mental',  2 ),
        (  3,   'mental',  3 ),
        (  4,   'mental',  4 ),
        (  5,   'mental',  4 ),
        (  6,   'mental',  5 ),
        (  7,   'mental',  3 ),
        (  8,   'mental',  4 ),
        (  9,   'mental',  4 ),
        ( 10,   'mental',  4 ),
        ( 11, 'physical',  4 ),
        ( 12, 'physical',  4 ),
        ( 13, 'physical',  3 ),
        ( 14, 'physical',  5 ),
        ( 15, 'physical',  4 ),
        ( 16, 'physical',  1 ),
        ( 17, 'physical',  1 ),
        ( 18, 'physical',  2 ),
        ( 19, 'physical',  3 ),
        ( 20, 'physical',  3 ),
        ( 21,  'medical',  1 ),
        ( 22,  'medical',  2 ),
        ( 23,  'medical',  2 ),
        ( 24,  'medical',  2 ),
        ( 25,  'medical',  3 ),
        ( 26,  'medical',  2 ),
        ( 27,  'medical',  3 ),
        ( 28,  'medical',  1 ),
        ( 29,  'medical',  3 ),
        ( 30,  'medical',  1 )], dtype=[('idx', '<i4'),
                                        ('Treatment', '|S8'),
                                        ('StressReduction', '<i4')])
        return data
       
        
    def doAnova(data):
        '''one-way ANOVA'''
        
        df = pd.DataFrame(data)
        model = ols('StressReduction ~ C(Treatment)',df).fit()
        
        anovaResults =  anova_lm(model)
        print(anovaResults)
        if anovaResults['PR(>F)'][0] < 0.05:
            print('One of the groups is different.')
    
    def doTukey(data, multiComp):    
        '''Do a pairwise comparison, and show the confidence intervals'''
        
        print((multiComp.tukeyhsd().summary()))
        
        # Calculate the p-values:
        res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
        df = pd.DataFrame(data)
        numData = len(df)
        numTreatments = len(df.Treatment.unique())
        dof = numData - numTreatments
        
        # Show the group names
        print((multiComp.groupsunique))
        
        # Generate a print -------------------
        
        # Get the data
        xvals = np.arange(3)
        res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
        errors = np.ravel(np.diff(res2.confint)/2)
        
        # Plot them
        plt.plot(xvals, res2.meandiffs, 'o')
        plt.errorbar(xvals, res2.meandiffs, yerr=errors, fmt='o')
        
        # Put on labels
        pair_labels = multiComp.groupsunique[np.column_stack(res2._multicomp.pairindices)]
        plt.xticks(xvals, pair_labels)
        
        # Format the plot
        xlim = -0.5, 2.5
        plt.hlines(0, *xlim)
        plt.xlim(*xlim)
        plt.title('Multiple Comparison of Means - Tukey HSD, FWER=0.05' +
                  '
     Pairwise Mean Differences')          
        
        # Save to outfile, and show the data
        outFile = 'multComp.png'
        showData(outFile)
        
    def Holm_Bonferroni(multiComp):
        ''' Instead of the Tukey's test, we can do pairwise t-test '''
        
        # First, with the "Holm" correction
        rtp = multiComp.allpairtest(stats.ttest_rel, method='Holm')
        print((rtp[0]))
        
        # and then with the Bonferroni correction
        print((multiComp.allpairtest(stats.ttest_rel, method='b')[0]))
        
        # Any value, for testing the program for correct execution
        checkVal = rtp[1][0][0,0]
        return checkVal
        
    def main():
        # Get the data
        data = setData()
        
        # Do a one-way ANOVA
        doAnova(data)
        
        #Then, do the multiple testing
        multiComp = MultiComparison(data['StressReduction'], data['Treatment'])
        
        doTukey(data, multiComp)    # Tukey's HSD test
        checkVal = Holm_Bonferroni(multiComp)  # Alternatives to Tukey's HSD test
        
        return checkVal     # this is only for regression testing of the program
        
    if __name__ == '__main__':
        main()
    

    多重检验结果和贾俊平的LSD结果不一样,经过T配对试验,多重检验和T配对试验一致,LSD对小样本可能不准确

    # -*- coding: utf-8 -*-
    
    import scipy,math
    from scipy.stats import f
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.stats as stats
    # additional packages
    from statsmodels.stats.diagnostic import lillifors
    #多重比较
    from statsmodels.sandbox.stats.multicomp import multipletests
    #用于排列组合
    import itertools
    #独立T检验
    from scipy.stats import ttest_ind
    #配对T检验
    from scipy.stats import ttest_rel 
    
    
    #mental 
    group1=[2,2,3,4,4,5,3,4,4,4]
    #physical
    group2=[4,4,3,5,4,1,1,2,3,3]
    #medical
    group3=[1,2,2,2,3,2,3,1,3,1]
    
    list_groups=[group1,group2,group3]
    list_total=group1+group2+group3
    a=0.05
     
    #one within group error,also know as random error
    def SE(group):
        se=0
        mean1=np.mean(group)
        for i in group:
            error=i-mean1
            se+=error**2
        return se
         
    '''
    >>> SE(group1)
    22.0
    >>> SE(group2)
    18.0
    >>> SE(group3)
    14.0
    '''
    #sum of squares within group error,also know as random error   
    def SSE(list_groups): 
        sse=0
        for group in list_groups:
            se=SE(group)
            sse+=se
        return sse
             
         
    #误差总平方和   
    def SST(list_total):
        sst=0
        mean1=np.mean(list_total)
        for i in list_total:
            error=i-mean1
            sst+=error**2
        return sst
         
         
    #SSA,between-group sum of squares 组间平方和,公式1:ssa=sst-sse
    def SSA(list_groups,list_total):
        sse=SSE(list_groups)
        sst=SST(list_total)
        ssa=sst-sse
        return ssa
         
         
    #SSA,between-group sum of squares 组间平方和
    def SSA1(list_groups,list_total):
        mean_total=np.mean(list_total)
        ssa=0
        for group in list_groups:
            group_mean=np.mean(group)
            distance=(mean_total-group_mean)**2
            ssa+=distance
         
        ssa=ssa*5
        return ssa       
         
    #处理效应均方   
    def MSA(list_groups,list_total):
        ssa=SSA(list_groups,list_total)
        msa=ssa/(len(list_groups)-1)*1.0
        return msa
         
    # 误差均方
    def MSE(list_groups,list_total):
        sse=SSE(list_groups)
        mse=sse/(len(list_total)-1*len(list_groups))*1.0 
        return mse             
         
    #F score
    def F(list_groups,list_total):
        msa=MSA(list_groups,list_total)
        mse=MSE(list_groups,list_total)
        ratio=msa/mse*1.0
        return ratio
    '''
    >>> F(list_groups,list_total)
    22.592592592592595
    '''
       
    #LSD检验有问题,需要核对,不如配对T检验准确 
    #LSD(least significant difference)最小显著差异
    def LSD(list_groups,list_total,sample1,sample2):
        mean1=np.mean(sample1)
        mean2=np.mean(sample2)
        distance=abs(mean1-mean2)
        print"distance:",distance
        #t检验的自由度
        df=len(list_total)-1*len(list_groups)
        mse=MSE(list_groups,list_total)
        print"MSE:",mse
        t_value=stats.t(df).isf(a/2)
        print"t value:",t_value
        lsd=t_value*math.sqrt(mse*(1.0/len(sample1)+1.0/len(sample2)))
        print "LSD:",lsd
        if distance<lsd:
            print"no significant difference between:",sample1,sample2
        else:
            print"there is significant difference between:",sample1,sample2
         
      
    #正态分布测试
    def check_normality(testData):
         
        #20<样本数<50用normal test算法检验正态分布性
        if 20<len(testData) <50:
           p_value= stats.normaltest(testData)[1]
           if p_value<0.05:
               print"use normaltest"
               print "data are not normal distributed"
               return  False
           else:
               print"use normaltest"
               print "data are normal distributed"
               return True
         
        #样本数小于50用Shapiro-Wilk算法检验正态分布性
        if len(testData) <50:
           p_value= stats.shapiro(testData)[1]
           if p_value<0.05:
               print "use shapiro:"
               print "data are not normal distributed"
               return  False
           else:
               print "use shapiro:"
               print "data are normal distributed"
               return True
           
        if 300>=len(testData) >=50:
           p_value= lillifors(testData)[1]
           if p_value<0.05:
               print "use lillifors:"
               print "data are not normal distributed"
               return  False
           else:
               print "use lillifors:"
               print "data are normal distributed"
               return True
         
        if len(testData) >300: 
           p_value= stats.kstest(testData,'norm')[1]
           if p_value<0.05:
               print "use kstest:"
               print "data are not normal distributed"
               return  False
           else:
               print "use kstest:"
               print "data are normal distributed"
               return True
     
     
    #对所有样本组进行正态性检验
    def NormalTest(list_groups):
        for group in list_groups:
            #正态性检验
            status=check_normality(group1)
            if status==False :
                return False
                 
    #排列组合函数
    def Combination(list_groups):
        combination= []
        for i in range(1,len(list_groups)+1):
            iter = itertools.combinations(list_groups,i)
            combination.append(list(iter))
        #需要排除第一个和最后一个
        return combination[1:-1][0]
    '''
    Out[57]:
    [[([2, 3, 7, 2, 6], [10, 8, 7, 5, 10]),
      ([2, 3, 7, 2, 6], [10, 13, 14, 13, 15]),
      ([10, 8, 7, 5, 10], [10, 13, 14, 13, 15])]]
    '''       
                 
    #多重比较           
    def Multiple_test(list_groups):
        
        combination=Combination(list_groups)
        for pair in combination:
            LSD(list_groups,list_total,pair[0],pair[1])
             
                     
                                 
    #discriptive statistcs
    print "discriptive statistcs----------------------------------------------"
    print "group1 mean",np.mean(group1)
    print "group2 mean",np.mean(group2)
    print "group3 mean",np.mean(group3)  
                                                     
         
    #对所有样本组进行正态性检验 
    print"M=Normality test:-----------------------------------" 
    NormalTest(list_groups)
     
    #方差齐性检测
    print"levene test:-----------------------------------"
    leveneResult=scipy.stats.levene(group1,group2,group3)
    leveneScore=leveneResult[0]
    p_levene=leveneResult[1]
    if p_levene<0.05:
       print"levene test is not fit,be attention!"
    else:
       print"levene test is ok"
    '''
    H0成立,三组数据方差无显著差异
    Out[9]: LeveneResult(statistic=0.24561403508771934, pvalue=0.7860617221429711)
    '''
     
    print "result--------------------------------------------------"
    f_score=F(list_groups,list_total)
    print"F score:",f_score
    #sf 为生存函数survival function
    #组数自由度
    df1=len(list_groups)-1
    #所有样本的自由度
    df2=len(list_total)-1*len(list_groups)
    probability=f.sf(f_score,df1,df2)
    print"p value:",probability
    '''
    Out[28]: 8.5385924542746692e-05
    ''' 
    if probability<0.05:
        print"there is significance,H1 win"
    else:
       print"there is no significance,H0 win"
     
    #多重比较
    print"multiple test----------------------------------------------"
    print"Multiple test",Multiple_test
    Multiple_test(list_groups) 
    

    贾俊平书里的例子,综合多重检验和LSD方法结果一致

    #居民区
    group1=[265,310,220,290,350,300,445,480,500,430,428,530]
    #商业区
    group2=[410,305,450,380,310,390,590,480,510,470,415,390]
    #写字楼
    group3=[180,290,330,220,170,256,290,283,260,246,275,320]

    # -*- coding: utf-8 -*-
    
    # Import standard packages
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import stats
    import pandas as pd
    import os
    # additional packages
    import sys
    sys.path.append(os.path.join('..', '..', 'Utilities'))
    
    try:
    # Import formatting commands if directory "Utilities" is available
        from ISP_mystyle import showData 
        
    except ImportError:
    # Ensure correct performance otherwise
        def showData(*options):
            plt.show()
            return
         
    
    # Other required packages
    from statsmodels.stats.multicomp import (pairwise_tukeyhsd,
                                             MultiComparison)
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    from statsmodels.stats.libqsturng import psturng
    
    
    def setData():
        ''' Set up the data, as a structured array. '''
        
        # The first and last field are 32-bit intergers; the second field is an
        # 8-byte string. Note that here we can also give names to the individual
        # fields!
        data = np.rec.array([
        (  1,   'resident', 265 ),
        (  2,   'resident', 310 ),
        (  3,   'resident', 220 ),
        (  4,   'resident', 290 ),
        (  5,   'resident', 350 ),
        (  6,   'resident', 300 ),
        (  7,   'resident', 445 ),
        (  8,   'resident', 480 ),
        (  9,   'resident', 500 ),
        ( 10,   'resident', 430),
        ( 11,   'resident', 428),
        ( 12,   'resident', 530 ),
        ( 13, 'commercial', 410 ),
        ( 14, 'commercial', 305 ),
        ( 15, 'commercial', 450 ),
        ( 16, 'commercial', 380 ),
        ( 17, 'commercial', 310 ),
        ( 18, 'commercial', 390 ),
        ( 19, 'commercial', 590 ),
        ( 20, 'commercial', 480 ),
        ( 21, 'commercial', 510 ),
        ( 22, 'commercial', 470 ),
        ( 23, 'commercial', 415 ),
        ( 24, 'commercial', 390 ),
        ( 25, 'officeBuilding', 180 ),
        ( 26, 'officeBuilding', 290 ),
        ( 27, 'officeBuilding', 330 ),
        ( 28, 'officeBuilding', 220 ),
        ( 29, 'officeBuilding', 170),
        ( 30, 'officeBuilding', 256),
        ( 31, 'officeBuilding', 290 ),
        ( 32, 'officeBuilding', 283 ),
        ( 33, 'officeBuilding', 260),
        ( 34, 'officeBuilding', 246),
        ( 35, 'officeBuilding', 275),
        ( 36, 'officeBuilding', 320),
         ], dtype=[('idx', '<i4'),
                                        ('Treatment', '|S8'),
                                        ('StressReduction', '<i4')])
        return data
    
       
        
    def doAnova(data):
        '''one-way ANOVA'''
        
        df = pd.DataFrame(data)
        model = ols('StressReduction ~ C(Treatment)',df).fit()
        
        anovaResults =  anova_lm(model)
        print(anovaResults)
        if anovaResults['PR(>F)'][0] < 0.05:
            print('One of the groups is different.')
    
    def doTukey(data, multiComp):    
        '''Do a pairwise comparison, and show the confidence intervals'''
        
        print((multiComp.tukeyhsd().summary()))
        
        # Calculate the p-values:
        res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
        df = pd.DataFrame(data)
        numData = len(df)
        numTreatments = len(df.Treatment.unique())
        dof = numData - numTreatments
        
        # Show the group names
        print((multiComp.groupsunique))
        
        # Generate a print -------------------
        
        # Get the data
        xvals = np.arange(3)
        res2 = pairwise_tukeyhsd(data['StressReduction'], data['Treatment'])
        errors = np.ravel(np.diff(res2.confint)/2)
        
        # Plot them
        plt.plot(xvals, res2.meandiffs, 'o')
        plt.errorbar(xvals, res2.meandiffs, yerr=errors, fmt='o')
        
        # Put on labels
        pair_labels = multiComp.groupsunique[np.column_stack(res2._multicomp.pairindices)]
        plt.xticks(xvals, pair_labels)
        
        # Format the plot
        xlim = -0.5, 2.5
        plt.hlines(0, *xlim)
        plt.xlim(*xlim)
        plt.title('Multiple Comparison of Means - Tukey HSD, FWER=0.05' +
                  '
     Pairwise Mean Differences')          
        
        # Save to outfile, and show the data
        outFile = 'multComp.png'
        showData(outFile)
        
    def Holm_Bonferroni(multiComp):
        ''' Instead of the Tukey's test, we can do pairwise t-test '''
        
        # First, with the "Holm" correction
        rtp = multiComp.allpairtest(stats.ttest_rel, method='Holm')
        print((rtp[0]))
        
        # and then with the Bonferroni correction
        print((multiComp.allpairtest(stats.ttest_rel, method='b')[0]))
        
        # Any value, for testing the program for correct execution
        checkVal = rtp[1][0][0,0]
        return checkVal
        
    def main():
        # Get the data
        data = setData()
        
        # Do a one-way ANOVA
        doAnova(data)
        
        #Then, do the multiple testing
        multiComp = MultiComparison(data['StressReduction'], data['Treatment'])
        
        doTukey(data, multiComp)    # Tukey's HSD test
        checkVal = Holm_Bonferroni(multiComp)  # Alternatives to Tukey's HSD test
        
        return checkVal     # this is only for regression testing of the program
        
    if __name__ == '__main__':
        main()
    

    贾俊平书里的例子,综合多重检验和LSD方法结果一致

    #居民区
    group1=[265,310,220,290,350,300,445,480,500,430,428,530]
    #商业区
    group2=[410,305,450,380,310,390,590,480,510,470,415,390]
    #写字楼
    group3=[180,290,330,220,170,256,290,283,260,246,275,320]

    # -*- coding: utf-8 -*-
    
    import scipy,math
    from scipy.stats import f
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.stats as stats
    # additional packages
    from statsmodels.stats.diagnostic import lillifors
    #多重比较
    from statsmodels.sandbox.stats.multicomp import multipletests
    #用于排列组合
    import itertools
    #独立T检验
    from scipy.stats import ttest_ind
    #配对T检验
    from scipy.stats import ttest_rel 
    
    
    #居民区 
    group1=[265,310,220,290,350,300,445,480,500,430,428,530]
    #商业区
    group2=[410,305,450,380,310,390,590,480,510,470,415,390]
    #写字楼
    group3=[180,290,330,220,170,256,290,283,260,246,275,320]
    
    list_groups=[group1,group2,group3]
    list_total=group1+group2+group3
    a=0.05
     
    #one within group error,also know as random error
    def SE(group):
        se=0
        mean1=np.mean(group)
        for i in group:
            error=i-mean1
            se+=error**2
        return se
         
    '''
    >>> SE(group1)
    22.0
    >>> SE(group2)
    18.0
    >>> SE(group3)
    14.0
    '''
    #sum of squares within group error,also know as random error   
    def SSE(list_groups): 
        sse=0
        for group in list_groups:
            se=SE(group)
            sse+=se
        return sse
             
         
    #误差总平方和   
    def SST(list_total):
        sst=0
        mean1=np.mean(list_total)
        for i in list_total:
            error=i-mean1
            sst+=error**2
        return sst
         
         
    #SSA,between-group sum of squares 组间平方和,公式1:ssa=sst-sse
    def SSA(list_groups,list_total):
        sse=SSE(list_groups)
        sst=SST(list_total)
        ssa=sst-sse
        return ssa
         
         
    #SSA,between-group sum of squares 组间平方和
    def SSA1(list_groups,list_total):
        mean_total=np.mean(list_total)
        ssa=0
        for group in list_groups:
            group_mean=np.mean(group)
            distance=(mean_total-group_mean)**2
            ssa+=distance
         
        ssa=ssa*5
        return ssa       
         
    #处理效应均方   
    def MSA(list_groups,list_total):
        ssa=SSA(list_groups,list_total)
        msa=ssa/(len(list_groups)-1)*1.0
        return msa
         
    # 误差均方
    def MSE(list_groups,list_total):
        sse=SSE(list_groups)
        mse=sse/(len(list_total)-1*len(list_groups))*1.0 
        return mse             
         
    #F score
    def F(list_groups,list_total):
        msa=MSA(list_groups,list_total)
        mse=MSE(list_groups,list_total)
        ratio=msa/mse*1.0
        return ratio
    '''
    >>> F(list_groups,list_total)
    22.592592592592595
    '''
       
    #LSD检验有问题,需要核对,不如配对T检验准确 
    #LSD(least significant difference)最小显著差异
    def LSD(list_groups,list_total,sample1,sample2):
        mean1=np.mean(sample1)
        mean2=np.mean(sample2)
        distance=abs(mean1-mean2)
        print"distance:",distance
        #t检验的自由度
        df=len(list_total)-1*len(list_groups)
        mse=MSE(list_groups,list_total)
        print"MSE:",mse
        t_value=stats.t(df).isf(a/2)
        print"t value:",t_value
        lsd=t_value*math.sqrt(mse*(1.0/len(sample1)+1.0/len(sample2)))
        print "LSD:",lsd
        if distance<lsd:
            print"no significant difference between:",sample1,sample2
        else:
            print"there is significant difference between:",sample1,sample2
         
      
    #正态分布测试
    def check_normality(testData):
         
        #20<样本数<50用normal test算法检验正态分布性
        if 20<len(testData) <50:
           p_value= stats.normaltest(testData)[1]
           if p_value<0.05:
               print"use normaltest"
               print "data are not normal distributed"
               return  False
           else:
               print"use normaltest"
               print "data are normal distributed"
               return True
         
        #样本数小于50用Shapiro-Wilk算法检验正态分布性
        if len(testData) <50:
           p_value= stats.shapiro(testData)[1]
           if p_value<0.05:
               print "use shapiro:"
               print "data are not normal distributed"
               return  False
           else:
               print "use shapiro:"
               print "data are normal distributed"
               return True
           
        if 300>=len(testData) >=50:
           p_value= lillifors(testData)[1]
           if p_value<0.05:
               print "use lillifors:"
               print "data are not normal distributed"
               return  False
           else:
               print "use lillifors:"
               print "data are normal distributed"
               return True
         
        if len(testData) >300: 
           p_value= stats.kstest(testData,'norm')[1]
           if p_value<0.05:
               print "use kstest:"
               print "data are not normal distributed"
               return  False
           else:
               print "use kstest:"
               print "data are normal distributed"
               return True
     
     
    #对所有样本组进行正态性检验
    def NormalTest(list_groups):
        for group in list_groups:
            #正态性检验
            status=check_normality(group1)
            if status==False :
                return False
                 
    #排列组合函数
    def Combination(list_groups):
        combination= []
        for i in range(1,len(list_groups)+1):
            iter = itertools.combinations(list_groups,i)
            combination.append(list(iter))
        #需要排除第一个和最后一个
        return combination[1:-1][0]
    '''
    Out[57]:
    [[([2, 3, 7, 2, 6], [10, 8, 7, 5, 10]),
      ([2, 3, 7, 2, 6], [10, 13, 14, 13, 15]),
      ([10, 8, 7, 5, 10], [10, 13, 14, 13, 15])]]
    '''       
                 
    #多重比较           
    def Multiple_test(list_groups):
        
        combination=Combination(list_groups)
        for pair in combination:
            LSD(list_groups,list_total,pair[0],pair[1])
             
                     
                                 
    #discriptive statistcs
    print "discriptive statistcs----------------------------------------------"
    print "group1 mean",np.mean(group1)
    print "group2 mean",np.mean(group2)
    print "group3 mean",np.mean(group3)  
                                                     
         
    #对所有样本组进行正态性检验 
    print"M=Normality test:-----------------------------------" 
    NormalTest(list_groups)
     
    #方差齐性检测
    print"levene test:-----------------------------------"
    leveneResult=scipy.stats.levene(group1,group2,group3)
    leveneScore=leveneResult[0]
    p_levene=leveneResult[1]
    if p_levene<0.05:
       print"levene test is not fit,be attention!"
    else:
       print"levene test is ok"
    '''
    H0成立,三组数据方差无显著差异
    Out[9]: LeveneResult(statistic=0.24561403508771934, pvalue=0.7860617221429711)
    '''
     
    print "result--------------------------------------------------"
    f_score=F(list_groups,list_total)
    print"F score:",f_score
    #sf 为生存函数survival function
    #组数自由度
    df1=len(list_groups)-1
    #所有样本的自由度
    df2=len(list_total)-1*len(list_groups)
    probability=f.sf(f_score,df1,df2)
    print"p value:",probability
    '''
    Out[28]: 8.5385924542746692e-05
    ''' 
    if probability<0.05:
        print"there is significance,H1 win"
    else:
       print"there is no significance,H0 win"
     
    #多重比较
    print"multiple test----------------------------------------------"
    print"Multiple test",Multiple_test
    Multiple_test(list_groups) 
    

    python风控评分卡建模和风控常识(博客主亲自录制视频教程)

  • 相关阅读:
    电力基本知识
    .net图表工具汇总
    最重要的十年做什么才不浪费?
    花10分钟看一看少走30年弯路
    给明年依然年轻的我们
    Qt经典—线程、事件与Qobject
    C#源码500份
    .NET 性能优化方法总结==转
    qt +ChartDirector 绘制图表
    创业者,你为什么这么着急?
  • 原文地址:https://www.cnblogs.com/webRobot/p/6902000.html
Copyright © 2011-2022 走看看