zoukankan      html  css  js  c++  java
  • Poj 1113 Wall

    地址:http://poj.org/problem?id=1113

    题目:

    Wall
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 36064   Accepted: 12315

    Description

    Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

    Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 

    The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

    Input

    The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 

    Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

    Output

    Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

    Sample Input

    9 100
    200 400
    300 400
    300 300
    400 300
    400 400
    500 400
    500 200
    350 200
    200 200

    Sample Output

    1628

    Hint

    结果四舍五入就可以了
    思路:凸包模板题,求出凸包边长然后加上一个圆周长就可以啦
      1 /* 二维几何  */
      2 /* 需要包含的头文件 */
      3 #include <cstdio>
      4 #include <cstring>
      5 #include <cmath >
      6 #include <iostream>
      7 #include <algorithm>
      8 
      9 using namespace std;
     10 /** 常用的常量定义 **/
     11 const double INF  = 1e200;
     12 const double eps  = 1e-10;
     13 const double PI  = acos(-1.0);
     14 const int Max = 1e6;
     15 
     16 /** 基本几何结构 **/
     17 struct Point
     18 {
     19     double x,y;
     20     Point(double a=0, double b=0){x=a,y=b;}
     21     bool operator<(const Point &ta)const
     22     {
     23         if(x==ta.x)     return y<ta.y;
     24         return x<ta.x;
     25     }
     26     friend Point operator+(const Point &ta,const Point &tb)
     27     {
     28         return Point(ta.x+tb.x,ta.y+tb.y);
     29     }
     30     friend Point operator-(const Point &ta,const Point &tb)
     31     {
     32         return Point(ta.x-tb.x,ta.y-tb.y);
     33     }
     34 };
     35 struct Vec2D        ///二维向量,*重载为点乘,/重载为叉乘
     36 {
     37     double x,y;
     38     Vec2D(double ta,double tb){x=ta,y=tb;}
     39     Vec2D(Point &ta){x=ta.x,y=ta.y;}
     40     friend double operator*(const Vec2D &ta,const Vec2D &tb)
     41     {
     42         return ta.x*tb.x+ta.y*tb.y;
     43     }
     44     friend double operator/(const Vec2D &ta,const Vec2D &tb)
     45     {
     46         return ta.x*tb.y-ta.y*tb.x;
     47     }
     48     friend Vec2D operator+(const Vec2D &ta,const Vec2D &tb)
     49     {
     50         return Vec2D(ta.x+tb.x,ta.y+tb.y);
     51     }
     52     friend Vec2D operator-(const Vec2D &ta,const Vec2D &tb)
     53     {
     54         return Vec2D(ta.x-tb.x,ta.y-tb.y);
     55     }
     56     Vec2D operator=(const Vec2D &ta)
     57     {
     58         x=ta.x,y=ta.y;
     59         return *this;
     60     }
     61 };
     62 struct LineSeg      ///线段,重载了/作为叉乘运算符,*作为点乘运算符
     63 {
     64     Point s,e;
     65     LineSeg(){s=Point(0,0),e=Point(0,0);}
     66     LineSeg(Point a, Point b){s=a,e=b;}
     67     double lenth(void)
     68     {
     69         return sqrt((s.x-e.x)*(s.x-e.x)+(s.y-e.y)*(s.y-e.y));
     70     }
     71     friend double operator*(const LineSeg &ta,const LineSeg &tb)
     72     {
     73         return (ta.e.x-ta.s.x)*(tb.e.x-tb.s.x)+(ta.e.y-ta.s.y)*(tb.e.y-tb.s.y);
     74     }
     75     friend double operator/(const LineSeg &ta,const LineSeg &tb)
     76     {
     77         return (ta.e.x-ta.s.x)*(tb.e.y-tb.s.y)-(ta.e.y-ta.s.y)*(tb.e.x-tb.s.x);
     78     }
     79     LineSeg operator=(const LineSeg &ta)
     80     {
     81         s=ta.s,e=ta.e;
     82         return *this;
     83     }
     84 };
     85 struct Line         /// 直线的解析方程 a*x+b*y+c=0  为统一表示,约定 a >= 0
     86 {
     87     double a,b,c;
     88     Line(double d1=1, double d2=-1, double d3=0){ a=d1,b=d2,c=d3;}
     89 };
     90 
     91 double getdis(const Point &ta,const Point &tb);
     92 bool cmp(const Point &ta,const Point &tb);
     93 void graham(Point ps[],Point tb[],int n,int &num);
     94 void ConvexClosure(Point ps[],Point tb[],int n,int &num);
     95 
     96 Point ps[1100],tb[1100];
     97 int n,l,num;
     98 double ans;
     99 
    100 int main(void)
    101 {
    102     cin>>n>>l;
    103     for(int i=0,x,y;i<n;i++)
    104         scanf("%d%d",&x,&y),ps[i]=Point(x,y);
    105     graham(ps,tb,n,num);
    106     //for(int i=0;i<num;i++)
    107     //    printf("%f %f
    ",tb[i].x,tb[i].y);
    108     tb[num++]=tb[0];
    109     LineSeg lx;
    110     ans+=2*PI*l;
    111     for(int i=1;i<num;i++)
    112     {
    113         lx.s=tb[i-1],lx.e=tb[i];
    114         ans+=lx.lenth();
    115     }
    116     printf("%d
    ",(int)(0.5+ans));
    117     return 0;
    118 }
    119 
    120 double getdis(const Point &ta,const Point &tb)
    121 {
    122 
    123     return sqrt((ta.x-tb.x)*(ta.x-tb.x)+(ta.y-tb.y)*(ta.y-tb.y));
    124 }
    125 /** ************凸包算法****************
    126         寻找凸包的graham 扫描法
    127         PS(PointSet)为输入的点集;
    128         tb为输出的凸包上的点集,按照逆时针方向排列;
    129         n为PointSet中的点的数目
    130         num为输出的凸包上的点的个数
    131 ****************************************** **/
    132 bool cmp(const Point &ta,const Point &tb)
    133 {
    134     double tmp=LineSeg(ps[0],ta)/LineSeg(ps[0],tb);
    135     if(fabs(tmp)<eps)
    136         return getdis(ps[0],ta)<getdis(ps[0],tb);
    137     else if(tmp>0)
    138         return 1;
    139     return 0;
    140 }
    141 void graham(Point ps[],Point tb[],int n,int &num)
    142 {
    143     int cur=0,top=2;
    144     for(int i=1;i<n;i++)
    145         if(ps[cur].y>ps[i].y || (ps[cur].y==ps[i].y &&ps[cur].x>ps[i].x))
    146             cur=i;
    147     swap(ps[cur],ps[0]);
    148     sort(ps+1,ps+n,cmp);
    149     tb[0]=ps[0],tb[1]=ps[1],tb[2]=ps[2];
    150     for(int i=3;i<n;i++)
    151     {
    152         while(LineSeg(tb[top-1],tb[top])/LineSeg(tb[top-1],ps[i])<0)
    153             top--;
    154         tb[++top]=ps[i];
    155     }
    156     num=top+1;
    157 }
    158 /** 卷包裹法求点集凸壳,参数说明同graham算法 **/
    159 void ConvexClosure(Point ps[],Point tb[],int n,int &num)
    160 {
    161     LineSeg lx,ly;
    162     int cur,ch;
    163     bool vis[Max];
    164     num=-1,cur=0;
    165     memset(vis,0,sizeof(vis));
    166     for(int i=1;i<n;i++)
    167         if(ps[cur].y>ps[i].y || (ps[cur].y==ps[i].y &&ps[cur].x>ps[i].x))
    168             cur=i;
    169     tb[++num]=ps[cur];
    170     lx.s=Point(ps[cur].x-1,ps[cur].y),lx.e=ps[cur];
    171     /// 选取与最后一条确定边夹角最小的点,即余弦值最大者
    172     while(1)
    173     {
    174         double mxcross=-2,midis,tmxcross;
    175         ly.s=lx.e;
    176         for(int i=0;i<n;i++)if(!vis[i])
    177         {
    178             ly.e=ps[i];
    179             tmxcross=(lx*ly)/lx.lenth()/ly.lenth();
    180             if((fabs(tmxcross-mxcross)<eps && getdis(ly.s,ly.e)<midis) || tmxcross>mxcross)
    181                 mxcross=tmxcross,midis=getdis(ly.s,ly.e),ch=i;
    182         }
    183         if(ch==cur)break;
    184         tb[++num]=ps[ch],vis[ch]=1;
    185         lx.s=tb[num-1],lx.e=tb[num],ly.s=tb[num];
    186     }
    187     num++;
    188 }

     

  • 相关阅读:
    Android开发学习之路-使用Handler和Message更新UI
    Android开发学习之路-Service和Activity的通信
    Android开发学习之路-自定义ListView(继承BaseAdapter)
    URI、URL、URN
    理解 node.js 的事件循环
    创建hexo风格的markdown页面
    heroku
    js通过沿着作用域链还是原型链查找变量
    浏览器中实现3D全景浏览
    数据可视化图表ECharts
  • 原文地址:https://www.cnblogs.com/weeping/p/6362549.html
Copyright © 2011-2022 走看看