zoukankan      html  css  js  c++  java
  • 2016-2017 National Taiwan University World Final Team Selection Contest J

    题目:

    You are given one string S consisting of only '0' and '1'. You are bored, so you start to play with the string. In each operation, you can move any character of this string to some other position in the string. For example, suppose . Then you can move the first zero to the tail, and S will become '0100'.

    Additionally, you have Q numbers K1, K2, ..., KQ. For each i, you wonder what can be the maximum number of consecutive zeroes in the string if you start with S and use at most Ki operations. In order to satisfy your curiosity, please write a program which will find the answers for you.

    Input

    The first line of input contains one string S. The second line of input contains one integer Q. Each of the following Q lines contains one integer Ki indicating the maximum number of operations in i-th query.

    • 2 ≤ N ≤ 106
    • the length of S is exactly N characters
    • S consists of only '0' and '1'
    • 1 ≤ Q ≤ 105
    • N × Q ≤ 2 × 107
    • 1 ≤ Ki ≤ 106

    Output

    For each query, output one line containing one number: the answer for this query.

    Example

    Input
    0000110000111110
    5
    1
    2
    3
    4
    5
    Output
    5
    8
    9
    9
    9

    思路:
      对于每个区间[l,r],如果sum[r]-sum[l-1]<=k,则说明可以区间内所有1踢掉,然后还可以加入k-(sum[r]-sum[l1])个0进来。
      所以合法区间的贡献为(2*sum[l-1]-l)+(r-2*sum[r])+k+1.
      将判断合法的等式变形,可以得到:sum[r]-k<=sum[l-1]
      可以看出合法的r单调,所以可以枚举l,用单调队列维护答案。

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-6;
    10 const double pi=acos(-1.0);
    11 const int K=1e6+7;
    12 const int mod=1e9+7;
    13 
    14 int n,m,k,sum[K],q[K];
    15 char ss[K];
    16 int main(void)
    17 {
    18     scanf("%s",ss+1);
    19     n=strlen(ss+1);
    20     for(int i=1;i<=n;i++)   sum[i]=sum[i-1]+(ss[i]=='1'?1:0);
    21     scanf("%d",&m);
    22     while(m--)
    23     {
    24         int k,ans=0,st=0,se=0;
    25         scanf("%d",&k);
    26         for(int i=1,j=1;i<=n;i++)
    27         {
    28             while(j<=n&&sum[j]-k<=sum[i-1])
    29             {
    30                 while(st>se&&q[st]-2*sum[q[st]]<=j-2*sum[j]) st--;
    31                 q[++st]=j++;
    32             }
    33             while(st>se&&q[se+1]<i) se++;
    34             ans=max(ans,2*sum[i-1]-i+q[se+1]-2*sum[q[se+1]]+k+1);
    35         }
    36         ans=max(0,ans);
    37         ans=min(ans,n-sum[n]);
    38         printf("%d
    ",ans);
    39     }
    40     return 0;
    41 }
    
    
  • 相关阅读:
    Cypress系列(32)- url() 命令详解
    Cypress系列(31)- title() 命令详解
    Cypress系列(30)- 操作浏览器的命令
    Cypress系列(29)- 获取页面全局对象的命令
    Cypress系列(28)- scrollTo() 命令详解
    Cypress系列(27)- scrollIntoView() 命令详解
    Cypress系列(26)- 聚焦与失焦命令的详解
    Cypress系列(25)- submit() 命令详解
    Cypress系列(24)- 操作页面元素的命令
    urlencoded、json 格式详解
  • 原文地址:https://www.cnblogs.com/weeping/p/7301661.html
Copyright © 2011-2022 走看看