zoukankan      html  css  js  c++  java
  • G.Finding the Radius for an Inserted Circle 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

    地址:https://nanti.jisuanke.com/t/17314

    题目:

    Three circles C_{a}Ca​​, C_{b}Cb​​, and C_{c}Cc​​, all with radius RR and tangent to each other, are located in two-dimensional space as shown in Figure 11. A smaller circle C_{1}C1​​ with radius R_{1}R1​​ (R_{1}<RR1​​<R) is then inserted into the blank area bounded by C_{a}Ca​​, C_{b}Cb​​, and C_{c}Cc​​ so that C_{1}C1​​ is tangent to the three outer circles, C_{a}Ca​​, C_{b}Cb​​, and C_{c}Cc​​. Now, we keep inserting a number of smaller and smaller circles C_{k} (2 leq k leq N)Ck​​ (2kN) with the corresponding radius R_{k}Rk​​ into the blank area bounded by C_{a}Ca​​, C_{c}Cc​​ and C_{k-1}Ck1​​ (2 leq k leq N)(2kN), so that every time when the insertion occurs, the inserted circle C_{k}Ck​​ is always tangent to the three outer circles C_{a}Ca​​, C_{c}Cc​​ and C_{k-1}Ck1​​, as shown in Figure 11

    Figure 1.

    (Left) Inserting a smaller circle C_{1}C1​​ into a blank area bounded by the circle C_{a}Ca​​, C_{b}Cb​​ and C_{c}Cc​​.

    (Right) An enlarged view of inserting a smaller and smaller circle C_{k}Ck​​ into a blank area bounded by C_{a}Ca​​, C_{c}Cc​​ and C_{k-1}Ck1​​ (2 leq k leq N2kN), so that the inserted circle C_{k}Ck​​ is always tangent to the three outer circles, C_{a}Ca​​, C_{c}Cc​​, and C_{k-1}Ck1​​.

    Now, given the parameters RR and kk, please write a program to calculate the value of R_{k}Rk​​, i.e., the radius of the k-thkth inserted circle. Please note that since the value of R_kRk​​ may not be an integer, you only need to report the integer part of R_{k}Rk​​. For example, if you find that R_{k}Rk​​ = 1259.89981259.8998 for some kk, then the answer you should report is 12591259.

    Another example, if R_{k}Rk​​ = 39.102939.1029 for some kk, then the answer you should report is 3939.

    Assume that the total number of the inserted circles is no more than 1010, i.e., N leq 10N10. Furthermore, you may assume pi = 3.14159π=3.14159. The range of each parameter is as below:

    1 leq k leq N1kN, and 10^{4} leq R leq 10^{7}104​​R107​​.

    Input Format

    Contains l + 3l+3 lines.

    Line 11: ll ----------------- the number of test cases, ll is an integer.

    Line 22: RR ---------------- RR is a an integer followed by a decimal point,then followed by a digit.

    Line 33: kk ---------------- test case #11, kk is an integer.

    ldots

    Line i+2i+2: kk ----------------- test case # ii.

    ldots

    Line l +2l+2: kk ------------ test case #ll.

    Line l + 3l+3: -11 ---------- a constant -11 representing the end of the input file.

    Output Format

    Contains ll lines.

    Line 11: kR_{k}Rk​​ ----------------output for the value of kk and R_{k}Rk​​ at the test case #11, each of which should be separated by a blank.

    ldots

    Line ii: kR_{k}Rk​​ ----------------output for kk and the value of R_{k}Rk​​ at the test case # ii, each of which should be separated by a blank.

    Line ll: kR_{k}Rk​​ ----------------output for kk and the value ofR_{k}Rk​​ at the test case # ll, each of which should be separated by a blank.

    样例输入

    1
    152973.6
    1
    -1

    样例输出

    1 23665

    题目来源

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

     

    思路:

      圆的反演。

      很容易想到把上面两大圆的切点作为反演中心,这样会得到下图。

      绿色的是反演前的圆,黄色的是反演后的图形,两个大圆成了平行直线,下面的大圆成了直线间的小圆,后面添加的圆都在这个小圆的下面。

      所以求出小圆的圆心的y即可,然后反演回去可以得到半径。

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-8;
    10 const double PI=acos(-1.0);
    11 const int K=1e6+7;
    12 const int mod=1e9+7;
    13 
    14 
    15 int main(void)
    16 {
    17     double r,x,y,ls,dis,ans[11];
    18     int t;
    19     cin>>t>>r;
    20     x=0.5*r,ls=-0.5*sqrt(3.0)*r;
    21     dis=x*x+ls*ls;
    22     ls=ls/dis;
    23     r=1.0/(2*r);
    24     for(int i=1;i<=10;i++)
    25     {
    26         y=ls-r*2;
    27         ans[i]=0.5*(1.0/(y-r)-1.0/(y+r));
    28         ls=y;
    29     }
    30     for(int i=1,k;i<=t;i++)
    31         scanf("%d",&k),printf("%d %d
    ",k,(int)ans[k]);
    32     return 0;
    33 }
  • 相关阅读:
    Centos7中在线/离线安装DockerCE最新版
    Centos7中离线安装DockerCE最新版
    Docker中部署Mysql5.7和DbAdmin的docker-compose.yml
    在三台Centos或Windows中部署三台Zookeeper集群配置
    Python爬虫指定关键词下载百度图片的角本
    JAVA基于图片相似性算法实现以图搜图样例
    Foxmail中配置O365邮箱和Hotmail邮箱
    .Net混淆工具和反混淆工具
    MyBatis中使用实体中使用枚举,数据库中使用数值
    Mybatis中使用集合、数组
  • 原文地址:https://www.cnblogs.com/weeping/p/7624767.html
Copyright © 2011-2022 走看看