zoukankan      html  css  js  c++  java
  • 正则化

    正则化

    解释

    • L1正则化在尖角处更大概率发生碰撞,此时的解(w_1 = 0)
    • L2正则化:使得模型的解偏向于范数较小的(W),通过限制(W)范数的大小实现了对模型空间的限制,从而在一定程度上避免了过拟合。不过岭回归并不具有产生稀疏解的能力,得到的系数仍然需要数据中的所有特征才能计算预测结果,从计算量上来说并没有得到改观
    • L1正则化:能产生稀疏性,导致 W 中许多项变成零。 稀疏的解除了计算量上的好处之外,更重要的是更具有“可解释性”
    • L0正则化的值是模型参数中非零参数的个数,但难以求解。L1正则是L0正则的最优凸近似

    约束解释

    • 带正则项和带约束条件是等价的。为了约束(w)的可能取值空间防止过拟合,加上约束(这里的限制条件是2范数,对应于L2正则化)的优化问题变为:

      [egin{aligned} egin{cases} mathop{min} sum limits_{i=1}^N (y_i - w^Tx_i)^2 \ s.t. ||w||^2_2 leq m end{cases} end{aligned}​ ]

    • 对应拉格朗日函数(sum limits_{i=1}^N(y_i - w^Tx_i)^2 + lambda (||w||_2^2 - m))

    • (w^*)(lambda^*)分别是原问题和对偶问题的最优解,则根据KKT条件,它们应满足

      [egin{aligned} egin{cases} 0 = abla_w left( sum limits_{i=1}^N (y_i - w^{*T}x_i)^2 + lambda^* (||w^*||_2^2 - m) ight) \ s.t. 0 leq lambda^* end{cases} end{aligned} ]

    • 第一个式子对应了上图的L2正则化解空间

    贝叶斯先验

    • L1相当于对模型参数(w)引入拉普拉斯先验
    • L2相当于引入高斯先验,而拉普拉斯先验使参数为0的可能性更大
  • 相关阅读:
    拦截器-监听器-过滤器的区别
    实例Rest风格+SpringMVC+中文乱码解决
    Nginx功能详细介绍(大而全)
    Nginx应⽤场景之反向代理
    SpringMVC参数传递之日期类型
    SpringMVC请求参数绑定回顾
    数据输出机制之Model、Map及ModelMap回顾
    ReactHook快速上车
    Chrome性能调优技巧
    移动端适配的最佳实践
  • 原文地址:https://www.cnblogs.com/weilonghu/p/11922613.html
Copyright © 2011-2022 走看看