Carol is currently curling.
She has n disks each with radius r on the 2D plane.
Initially she has all these disks above the line y = 10100.
She then will slide the disks towards the line y = 0 one by one in order from 1 to n.
When she slides the i-th disk, she will place its center at the point (xi, 10100). She will then push it so the disk’s y coordinate continuously decreases, and x coordinate stays constant. The disk stops once it touches the line y = 0 or it touches any previous disk. Note that once a disk stops moving, it will not move again, even if hit by another disk.
Compute the y-coordinates of centers of all the disks after all disks have been pushed.
Input
The first line will contain two integers n and r (1 ≤ n, r ≤ 1 000), the number of disks, and the radius of the disks, respectively.
The next line will contain n integers x1, x2, ..., xn (1 ≤ xi ≤ 1 000) — the x-coordinates of the disks.
Output
Print a single line with n numbers. The i-th number denotes the y-coordinate of the center of the i-th disk. The output will be accepted if it has absolute or relative error at most 10 - 6.
Namely, let's assume that your answer for a particular value of a coordinate is a and the answer of the jury is b. The checker program will consider your answer correct if for all coordinates.
Example
Input
6 2
5 5 6 8 3 12
Output
2 6.0 9.87298334621 13.3370849613 12.5187346573 13.3370849613
Note
The final positions of the disks will look as follows:
In particular, note the position of the last disk.
题意:
给定半径相等的各个圆圆心横坐标,求每个圆的纵坐标(任意两两之间顶多相邻),注意“The checker program will consider your answer correct if for all coordinates.”
解题思路:
emmmm,为啥当场没写出来,可能是看到几何就畏惧了吧TwT,不过被hack精度的那些是什么鬼....
用res[]记录符合题意的纵坐标
每输入一个横坐标,判断和之前所有横坐标相比,只要有一个能达到相离的条件,令其纵坐标为r..
否则,就是
xx=fabs(x[pre]-x[next]);
yy=2*r;
ret=sqrt(yy*yy-xx*xx)+res[pre];
然后每次取最大值就可以了
具体看代码:#include <iostream> #include<cstdio> #include<cmath> using namespace std; double res[1005]; int n,r,x[1005]; double dis(int i,int j) { if(fabs(x[i]-x[j])<=2*r) { double xx=fabs(x[i]-x[j]); double yy=2*r; return sqrt(yy*yy-xx*xx)+res[i]; } return r; } double solve(int i) { double ret=r; for(int j=0;j<i;j++) ret=max(ret,dis(j,i)); return ret; } int main() { while(cin>>n>>r) { for(int i=0;i<n;i++) { scanf("%d",&x[i]); res[i]=solve(i); } for(int i=0;i<n;i++) printf("%.10f%c",res[i],i==n-1?' ':' '); } return 0; }