zoukankan      html  css  js  c++  java
  • 机器学习实战第五章Logistic回归

    def gradAscent(dataMatIn, classLabels):
        dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
        labelMat = mat(classLabels).transpose() #convert to NumPy matrix
        m,n = shape(dataMatrix)
        alpha = 0.001
        maxCycles = 500
        weights = ones((n,1))
        for k in range(maxCycles):              #heavy on matrix operations
            h = sigmoid(dataMatrix*weights)     #matrix mult
            error = (labelMat - h)              #vector subtraction
            weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
        return weights

    这是书中梯度上升算法的代码,但看到倒数第三行和倒数第二行的时候就懵逼了,书中说这里略去了一个简单的数据推导,嘤嘤嘤,想了一会没想出来,于是乎就百度看看大神的解释,这是找到的一篇解释的比较好的,仔细一看发现是在Ag的机器学习视频中讲过的,忘了。。。

    Sigmoid函数: $g(z)=frac{1}{1+e^{-z}}$

          $h_{ heta }(x)=g( heta ^{T}x)$

    这里$ heta$和书中w一样,表示系数

    代价函数如下,代价函数是用来计算预测值(类别)与实际值(类别)之间的误差的

          $cost(h_{ heta} (x),y)=left{egin{matrix}
          -log(h_{ heta}(x)), y=1\
          -log(1-h_{ heta}(x)), y=0end{matrix} ight.$

    写在一起表示为:

          $cost(h_{ heta} (x),y)=-ylog(h_{ heta}(x))-(1-y)log(1-h_{ heta}(x))$

     总体的代价函数为:

          $J( heta)=frac{1}{m}sum_{m}^{i=1}cost(h_{ heta} (x^{(i)}),y^{(i)})=frac{1}{m}sum_{m}^{i=1}-y^{(i)}log(h_{ heta}(x^{(i)}))-(1-y^{(i)})log(1-h_{ heta}(x^{(i)}))$

    要使误差最小,即求$J( heta)$最小,也可以转化成就$-J( heta)$的最大值,可以用梯度上升算法来求最大值,

          $ heta := heta+ alpha frac{partial J( heta )}{partial heta_{j}}$

    下面是推导过程:

        

    第三步到第四步:

        

    所以权重的迭代更新公式为:  

      $ heta_{j} = heta_{j}+ alpha sum_{m}^{i=1}(y_{i}-h_{ heta}(x^{(i)}))x^{(i))}$

    gradAscent是最原始的梯度上升算法,每次更新系数都需要计算整个数据集,计算量较大
    stocGradAscent0是随机梯度上升算法,每次只使用一个样本点来更新系数
    stocGradAscent1是改进后的随机梯度上升算法,1.增加了迭代次数,2.同时随机选取样本点对系数进行更新,减少了周期性波动 3.alpha每次迭代时都会进行调整,缓解数据波动和高频振动(这里不是太懂)    

     完整的程序代码

    import random
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    def loadDataSet():
        dataMat = []
        labelMat = []
        fr = open('testSet.txt')
        for line in fr.readlines():
            lineArr = line.strip().split()
            dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #分别是x0,x1,x2
            labelMat.append(int(lineArr[2]))    #标签
        return dataMat, labelMat
    
    def sigmoid(inX):
        return 1.0 / (1 + np.exp(-inX))
    
    def gradAscent(dataMatIn, classLabels):
        dataMatrix = np.mat(dataMatIn)  #100 * 3 array转换成matrix
        labelMat = np.mat(classLabels).transpose()  #100 * 3
        m, n = np.shape(dataMatrix) #100, 3
        alpha = 0.001
        maxCycles = 500
        weights = np.ones((n,1))    #3 * 1
        for k in range(maxCycles):
            h = sigmoid(dataMatrix * weights)   #100 * 1
            error = labelMat - h
            weights = weights + alpha * dataMatrix.transpose() * error #3 * 1
        return weights
    
    
    """画出决策边界"""
    def plotBestFit(weights):
        dataMat, labelMat = loadDataSet()
        dataArr = np.array(dataMat) #numpy的matrix类型转化成array
        n = np.shape(dataArr)[0]    #样本数100
        xcord1 = [];ycord1 = [] #类别为1的样本的x,y坐标
        xcord2 = [];ycord2 = [] #类别为0的样本的x,y坐标
        for i in range(n):
            if int(labelMat[i]) == 1:
                xcord1.append(dataArr[i, 1]);
                ycord1.append(dataArr[i, 2])
            else:
                xcord2.append(dataArr[i, 1]);
                ycord2.append(dataArr[i, 2])
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')   #s参数是数据点的粗细,marker是标记('s'是正方形,默认圆形)
        ax.scatter(xcord2, ycord2, s=30, c='green')
        x = np.arange(-3.0, 3.0, 0.1)   #直线x坐标的取值范围
        y = (-weights[0] - weights[1] * x) / weights[2] #直线方程
        ax.plot(x, y)
        plt.xlabel('X1');
        plt.ylabel('X2');
        plt.show()
    
    """画出系数变化图"""
    def plotWeight(weight0, weight1, weight2):
        x = np.arange(len(weight0))
        fig = plt.figure()
        ax = fig.add_subplot(311)  # 等价于ax = plt.subplot(311)
        print(weight0)
        ax.plot(x, weight0)
        ax = fig.add_subplot(312)
        ax.plot(x, weight1)
        ax = fig.add_subplot(313)
        ax.plot(x, weight2)
        plt.show()
    
    
    """随机梯度上升算法"""
    def stocGradAscent0(dataArr, classbels, numIter):    #书上的命名容易误导人,改一下
        m, n = np.shape(dataArr)
        alpha = 0.01
        weights = np.ones(n)
        w0 = []; w1 = []; w2 = []
        for j in range(numIter):
            for i in range(m):
                h = sigmoid(sum(dataArr[i] * weights))  #数值
                error = classbels[i] - h    #数值
                weights = weights + alpha * error * dataArr[i]
            w0.append(weights[0])
            w1.append(weights[1])
            w2.append(weights[2])
        return weights, w0, w1, w2
    
    
    """改进的随机梯度上升法"""
    def stocGradAscent1(dataArr, classbels, numIter=150):
        m, n = np.shape(dataArr)
        weights = np.ones(n)
        w0 = []; w1 = []; w2 = []
        for j in range(numIter):
            dataIndex = range(m)
            for i in range(m):
                alpha = 4 / (1.0 + j + i) + 0.01
                randIndex = int(random.uniform(0, len(dataIndex)))  #通过随机选取样本,来减少周期性的波动
                h = sigmoid(sum(dataArr[randIndex] * weights))
                error = classbels[randIndex] - h    #数值
                weights = weights + alpha * error * dataArr[randIndex]
            # w0.append(weights[0])
            # w1.append(weights[1])
            # w2.append(weights[2])
        # return weights, w0, w1, w2
        return weights
    
    dataMat, labelMat = loadDataSet()
    weights = gradAscent(dataMat, labelMat)
    plotBestFit(weights.getA())  #getA()函数将Numpy.matrix型转为ndarray型
    
    dataList, labelList = loadDataSet()
    weights,w0,w1,w2 = stocGradAscent0(np.array(dataList), labelList, 200)
    plotBestFit(weights)
    plotWeight(w0, w1,w2)
    
    dataList, labelList = loadDataSet()
    weights,w0,w1,w2 = stocGradAscent1(np.array(dataList), labelList)
    plotBestFit(weights)
    plotWeight(w0, w1,w2)
    
    
    """分类函数"""
    def classifyVector(inX, weights):
        prob = sigmoid(sum(inX * weights))
        if prob > 0.5: return 1.0
        else: return 0.0
    
    def colicTest():
        frTrain = open("horseColicTraining.txt")
        frTest = open("horseColicTest.txt")
        trainingSet = []; trainingLabels = []
        for line in frTrain.readlines():
            currLine = line.strip().split('	')
            lineArr = []
            for i in range(len(currLine)-1):
                lineArr.append(float(currLine[i]))
            trainingSet.append(lineArr)
            trainingLabels.append(float(currLine[len(currLine) - 1]))
        trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 500)
        errorCount = 0; numTestVec = 1
        for line in frTest.readlines():
            numTestVec += 1
            currLine = line.strip().split('	')
            lineArr = []
            for i in range(len(currLine)-1):
                lineArr.append(float(currLine[i]))
            if int(classifyVector(np.array(lineArr), trainWeights)) != int(currLine[len(currLine)-1]):
                errorCount += 1
        errorRate = float(errorCount) / float(numTestVec)
        print("the error rate of this test is: %f" % errorRate)
        return errorRate
    
    """计算10次的平均错误率"""
    def multiTest():
        numTests = 10; errorSum = 0.0
        for k in range(numTests):
            errorSum += colicTest()
        print("after %d iterations the average error rate is: %f" % (numTests, errorSum / float(numTests)))
    
    multiTest()

    梯度上升算法,迭代500次效果图   

       随机梯度上升算法,迭代200次效果图

                        随机梯度上升算法,迭代200次回归系数变化图                

      书上是这样的,不知道为什么不一样

                                           

             改进后的随机梯度上升算法的系数变化图,收敛的更快了

    改进后的随机梯度上升算法效果图             

  • 相关阅读:
    MySQL动态行转列
    决定把BLOG的文章从CU上同步过来
    MYSQL 如果把数据文件保存到其他磁盘里
    开元系统2.0框架平台
    批量修改表引擎
    arcims(HtmlView)开发经验总结1
    arcims 第2讲
    arcims讲座三:怎样设置ArcIMS的权限验证
    arc ims 第一讲
    arcims 讲座四:ArcIMS(HTML Viewer)定制开发探讨
  • 原文地址:https://www.cnblogs.com/weiququ/p/9414746.html
Copyright © 2011-2022 走看看