zoukankan      html  css  js  c++  java
  • 深度学习之 TensorFlow(五):mnist 的 Alexnet 实现

    尝试用 Alexnet 来构建一个网络模型,并使用 mnist 数据查看训练结果。

    我们将代码实现分为三个过程,加载数据、定义网络模型、训练数据和评估模型。

    实现代码如下:

    #-*- coding:utf-8 -*_
    
    
    #加载数据
    
    
    import tensorflow as tf
    
    # 输入数据
    from tensorflow.examples.tutorials.mnist import input_data
    #TensorFlow 自带,用来下载并返回 mnist 数据。可以自己下载 mnist数据后,存放到指定目录,我这里是 /tmp/data 目录。
    #其实如果没有下载数据,TensorFlow 也会帮你自动下载 mnist 数据存放到你指定的目录当中。
    #mnist 数据下载地址:http://yann.lecun.com/exdb/mnist/
    mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
    
    # 定义网络的超参数
    learning_rate = 0.001
    training_iters = 200000
    batch_size = 128
    display_step = 5
    
    # 定义网络的参数
    n_input = 784 # 输入的维度 (img shape: 28*28)
    n_classes = 10 # 标记的维度 (0-9 digits)
    dropout = 0.75 # Dropout的概率,输出的可能性
    
    # 输入占位符
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
    
    
    #构建网络模型
    
    
    # 定义卷积操作
    def conv2d(name,x, W, b, strides=1):
        # Conv2D wrapper, with bias and relu activation
        x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
        x = tf.nn.bias_add(x, b)
        return tf.nn.relu(x,name=name)  # 使用relu激活函数
    
    # 定义池化层操作
    def maxpool2d(name,x, k=2):
        # MaxPool2D wrapper
        return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                              padding='SAME',name=name)     #最大值池化
    
    # 规范化操作
    def norm(name, l_input, lsize=4):
        return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0,
                         beta=0.75, name=name)
    
    # 定义所有的网络参数
    weights = {
        'wc1': tf.Variable(tf.random_normal([11, 11, 1, 96])),
        'wc2': tf.Variable(tf.random_normal([5, 5, 96, 256])),
        'wc3': tf.Variable(tf.random_normal([3, 3, 256, 384])),
        'wc4': tf.Variable(tf.random_normal([3, 3, 384, 384])),
        'wc5': tf.Variable(tf.random_normal([3, 3, 384, 256])),
        'wd1': tf.Variable(tf.random_normal([4*4*256, 4096])),
        'wd2': tf.Variable(tf.random_normal([4096, 1024])),
        'out': tf.Variable(tf.random_normal([1024, n_classes]))
    }
    biases = {
        'bc1': tf.Variable(tf.random_normal([96])),
        'bc2': tf.Variable(tf.random_normal([256])),
        'bc3': tf.Variable(tf.random_normal([384])),
        'bc4': tf.Variable(tf.random_normal([384])),
        'bc5': tf.Variable(tf.random_normal([256])),
        'bd1': tf.Variable(tf.random_normal([4096])),
        'bd2': tf.Variable(tf.random_normal([1024])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    
    #定义 Alexnet 网络模型
    
    
    # 定义整个网络
    def alex_net(x, weights, biases, dropout):
        # 向量转为矩阵 Reshape input picture
        x = tf.reshape(x, shape=[-1, 28, 28, 1])
    
        # 第一层卷积
        # 卷积
        conv1 = conv2d('conv1', x, weights['wc1'], biases['bc1'])
        # 下采样
        pool1 = maxpool2d('pool1', conv1, k=2)
        # 规范化
        norm1 = norm('norm1', pool1, lsize=4)
    
        # 第二层卷积
        # 卷积
        conv2 = conv2d('conv2', norm1, weights['wc2'], biases['bc2'])
        # 最大池化(向下采样)
        pool2 = maxpool2d('pool2', conv2, k=2)
        # 规范化
        norm2 = norm('norm2', pool2, lsize=4)
    
        # 第三层卷积
        # 卷积
        conv3 = conv2d('conv3', norm2, weights['wc3'], biases['bc3'])
        # 规范化
        norm3 = norm('norm3', conv3, lsize=4)
    
        # 第四层卷积
        conv4 = conv2d('conv4', norm3, weights['wc4'], biases['bc4'])
    
        # 第五层卷积
        conv5 = conv2d('conv5', conv4, weights['wc5'], biases['bc5'])
        # 最大池化(向下采样)
        pool5 = maxpool2d('pool5', conv5, k=2)
        # 规范化
        norm5 = norm('norm5', pool5, lsize=4)
    
    
        # 全连接层1
        fc1 = tf.reshape(norm5, [-1, weights['wd1'].get_shape().as_list()[0]])
        fc1 =tf.add(tf.matmul(fc1, weights['wd1']),biases['bd1'])
        fc1 = tf.nn.relu(fc1)
        # dropout
        fc1=tf.nn.dropout(fc1,dropout)
    
        # 全连接层2
        fc2 = tf.reshape(fc1, [-1, weights['wd2'].get_shape().as_list()[0]])
        fc2 =tf.add(tf.matmul(fc2, weights['wd2']),biases['bd2'])
        fc2 = tf.nn.relu(fc2)
        # dropout
        fc2=tf.nn.dropout(fc2,dropout)
    
        # 输出层
        out = tf.add(tf.matmul(fc2, weights['out']) ,biases['out'])
        return out
    
    #构建模型,定义损失函数和优化器,并构建评估函数
    
    # 构建模型
    pred = alex_net(x, weights, biases, keep_prob)
    
    # 定义损失函数和优化器
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) 
    #这里定义损失函数时调用tf.nn.softmax_cross_entropy_with_logits() 函数必须使用参数命名的方式来调用 (logits=pred, labels=y)不然会报错。
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # 评估函数
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    
    #训练模型和评估模型
    
    
    # 初始化变量
    init = tf.global_variables_initializer()
    
    # 开启一个训练
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # 开始训练,直到达到training_iters,即200000
        while step * batch_size < training_iters:
            #获取批量数据
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout})
            if step % display_step == 0:
                # 计算损失值和准确度,输出
                loss,acc = sess.run([cost,accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.})
                print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
            step += 1
        print ("Optimization Finished!")
        # 计算测试集的精确度
        print ("Testing Accuracy:",
               sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                             y: mnist.test.labels[:256],
                                             keep_prob: 1.}))

    GitHub 代码:https://github.com/weixuqin/tensorflow/blob/master/AlexNet.py

  • 相关阅读:
    JUC基础(三):ConcurrentHashMap 锁分段机制
    JUC基础(二):原子变量 CAS算法
    JUC基础(一):volatile 关键字 内存可见性
    JAVA多线程(十):线程创建使用 (四)JDK5.0新增线程创建方式
    JAVA多线程(九):线程通信(二)线程的通信经典例题:生产者/消费者问题
    JAVA多线程(八):线程通信(一)线程的通信基础
    JAVA多线程(七):线程同步(三)线程的同步代码练习
    JAVA多线程(六):线程同步(二)线程的同步代码实现
    JAVA多线程(五):线程同步(一)线程的同步
    JAVA多线程(四):线程创建使用 (三)线程的生命周期
  • 原文地址:https://www.cnblogs.com/weixuqin/p/9022063.html
Copyright © 2011-2022 走看看