zoukankan      html  css  js  c++  java
  • 14、master原理与源码分析

    一、主备切换机制原理剖析

    1、图解

    image

    Master实际上可以配置两个,那么Spark原生的standalone模式是支持Master主备切换的。也就是说,当Active Master节点挂掉时,可以将StandBy master节点切换
    为Active Master。

    Spark Master主备切换可以基于两种机制,一种是基于文件系统的,一种是基于Zookeeper的。基于文件系统的主备切换机制,需要在Active Master挂掉之后,由我们
    手动切换到StandBy Master上;而基于Zookeeper的主备切换机制,可以自动实现切换Master。

    所以这里说的主备切换机制,实际上指的是在Active Master挂掉之后,切换到StandBy Master时,Master会执行的操作。

    首先,StandBy Master会使用持久化引擎去读取持久化的storedApps,storedDrivers,storedWorkers。持久化引擎有两种:
    FileSystemPersistenceEngine和ZookeeperPersistentEngine。读取出来后,会进行判断,如果storedApps,storedDrivers,storedWorkers有任何一个是非空的,
    继续向下执行,去启动master恢复机制,将持久化的Application,Driver,Worker信息重新进行注册,注册到Master内部的缓存结构中。注册完之后,
    将Application和Worker的状态修改为UNKNOWN,然后向Application所对应的Driver,以及Worker发送StandBy Master的地址。Driver和Worker,理论上来说,
    如果它们目前都在正常运行的话,那么在接收到Master发送来的地址之后,就会返回相应消息给新的Master。此时,Master在陆续接收到Driver和Worker发送
    来的响应消息后,会使用completeRecovery()方法对没有发送响应消息的Driver和Worker进行处理,过滤掉它们的信息。最后,调用Master自己的schedule()方法,
    对正在等待资源调度的Driver和Application进行调度,比如在某个worker上启动Driver,或者为Application在Worker上启动它需要的Executor。

    2、部分源码

    ###master.scala中的completeRecovery方法:
    
        /*
         * 完成Master的主备切换
         */
      def completeRecovery() {
        // Ensure "only-once" recovery semantics using a short synchronization period.
        synchronized {
          if (state != RecoveryState.RECOVERING) { return }
          state = RecoveryState.COMPLETING_RECOVERY
        }
        /*
         * 将Application和worker,过滤出来目前的状态还是UNKNOW的
         * 然后遍历,分别调用removeWorker和finishApplication方法,
         * 对可能已经出故障,或者甚至已经死掉的Application和Worker,进行清理 
         */
        // Kill off any workers and apps that didn't respond to us.
        workers.filter(_.state == WorkerState.UNKNOWN).foreach(removeWorker)
        apps.filter(_.state == ApplicationState.UNKNOWN).foreach(finishApplication)
    
        // Reschedule drivers which were not claimed by any workers
        drivers.filter(_.worker.isEmpty).foreach { d =>
          logWarning(s"Driver ${d.id} was not found after master recovery")
          if (d.desc.supervise) {
            logWarning(s"Re-launching ${d.id}")
            relaunchDriver(d)
          } else {
            removeDriver(d.id, DriverState.ERROR, None)
            logWarning(s"Did not re-launch ${d.id} because it was not supervised")
          }
        }
    
        state = RecoveryState.ALIVE
        schedule()
        logInfo("Recovery complete - resuming operations!")
      }

    二、注册机制原理剖析与源码分析

    1、图解

    image

    master 的注册流程: 
    1 worker. 
    当worker 启动之后,就会主动的向master 进行注册。
    
    master接收到worker的注册请求之后,会将状态为DEAD的worker过滤掉。对于状态为UNKNOWN的worker 节点清理掉worker的信息替换为新的worker节点。
    
    把worker 的注册信息写入到内存缓存中(hashmap)
    
    用持久化引擎,将worker 信息进行持久化(文件系统,zookeeper)
    
    调用schedule()方法;
    
    
    2.Driver 
    用spark-submit 提交Application 首先会注册Driver
    
    将Driver 信息写入到内存中
    
    加入等待调度队列
    
    用持久化引擎将driver信息写入到 文件系统/zookeeper
    
    调用schedule()方法,进行资源调度;
    
    Driver 启动好了之后 执行编写的application代码 执行 Sparkcontext 初始化 底层的 SparkDeploySchedulerBackend 会通过ClientActor
    发送RegisterApplication,到master进行Application 注册。
    
    将Application 信息写入内存。
    
    将application 写入对面。
    
    调用持久化将application 写入到文件系统/zookeeper

    2、master.scala中的Application注册原理代码分析

    case RegisterApplication(description) => {
      //如果master的状态是standby,就是当前的这个master,是standby master,
      //而不是Active Master,那么,当Application来请求注册时,会忽略请求。
      if (state == RecoveryState.STANDBY) {
        // ignore, don't send response
      } else {
        logInfo("Registering app " + description.name)
       //用ApplicationDescription信息,创建ApplicationInfo
        val app = createApplication(description, sender)
        //注册Application
       //将Application加入缓存中,并将Application加入等待调度的队列中-waitingApps
        registerApplication(app)
        logInfo("Registered app " + description.name + " with ID " + app.id)
        //使用持久化引擎,将Application进行持久化
        persistenceEngine.addApplication(app)
        //反向,向SparkDeploySchedulerBackend的APPClient的ClientActor,发送消息,也就是RegisterApplication
        sender ! RegisteredApplication(app.id, masterUrl)
        schedule()
      }

    三、状态改变机制源码分析

    1、Driver状态改变

    ###Master.scala 
    
    case DriverStateChanged(driverId, state, exception) => {
          state match {
            // 如果Driver的状态是错误、完成、杀死、失败,就移除Driver
            case DriverState.ERROR | DriverState.FINISHED | DriverState.KILLED | DriverState.FAILED =>
              removeDriver(driverId, state, exception)
            case _ =>
              throw new Exception(s"Received unexpected state update for driver $driverId: $state")
          }
    
    
    
    
    
    // 删除driver
      def removeDriver(driverId: String, finalState: DriverState, exception: Option[Exception]) {
        //用Scala高阶函数find()根据driverId,查找到driver
        drivers.find(d => d.id == driverId) match {
          case Some(driver) =>
            logInfo(s"Removing driver: $driverId")
            //将driver将内存缓存中删除
            drivers -= driver
            if (completedDrivers.size >= RETAINED_DRIVERS) {
              val toRemove = math.max(RETAINED_DRIVERS / 10, 1)
              completedDrivers.trimStart(toRemove)
            }
            //将driver加入到已经完成的completeDrivers
            completedDrivers += driver
            //从持久化引擎中删除driver
            persistenceEngine.removeDriver(driver)
            //设置driver状态设置为完成
            driver.state = finalState
            driver.exception = exception
            //从worker中遍历删除传入的driver
            driver.worker.foreach(w => w.removeDriver(driver))
            //重新调用schedule
            schedule()
          case None =>
            logWarning(s"Asked to remove unknown driver: $driverId")
        }
      }

    2、Executor状态改变

    ###org.apache.spark.deploy.master/Master.scala
    
        case ExecutorStateChanged(appId, execId, state, message, exitStatus) => {
          // 找到Executor对应的Application,然后再反过来通过Application内部的Executor缓存获取Executor信息
          val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId))
          execOption match {
            case Some(exec) => {
              // 如果有值
              val appInfo = idToApp(appId)
              exec.state = state
              if (state == ExecutorState.RUNNING) { appInfo.resetRetryCount() }
              // 向driver同步发送ExecutorUpdated消息
              exec.application.driver ! ExecutorUpdated(execId, state, message, exitStatus)
              // 判断,如果Executor完成了
              if (ExecutorState.isFinished(state)) {
                // Remove this executor from the worker and app
                logInfo(s"Removing executor ${exec.fullId} because it is $state")
                // 从Application缓存中移除Executor
                appInfo.removeExecutor(exec)
                // 从运行Executor的Worker的缓存中移除Executor
                exec.worker.removeExecutor(exec)
                // 判断 如果Executor的退出状态是非正常的
                val normalExit = exitStatus == Some(0)
                // Only retry certain number of times so we don't go into an infinite loop.
     
                if (!normalExit) {
                  // 判断Application当前的重试次数,是否达到了最大值,最大值是10
                  // 也就是说,Executor反复调度都是失败,那么认为Application也失败了
                  if (appInfo.incrementRetryCount() < ApplicationState.MAX_NUM_RETRY) {
                    // 重新进行调度
                    schedule()
                  } else {
                    // 否则,进行移除Application操作
                    val execs = appInfo.executors.values
                    if (!execs.exists(_.state == ExecutorState.RUNNING)) {
                      logError(s"Application ${appInfo.desc.name} with ID ${appInfo.id} failed " +
                        s"${appInfo.retryCount} times; removing it")
                      removeApplication(appInfo, ApplicationState.FAILED)
                    }
                  }
                }
              }
            }
            case None =>
              logWarning(s"Got status update for unknown executor $appId/$execId")
          }
        }
    
    
    
    
    
    ###removeApplication()方法:
    
    def removeApplication(app: ApplicationInfo, state: ApplicationState.Value) {
        if (apps.contains(app)) {
          logInfo("Removing app " + app.id)
          //从application队列(hashset)中删除当前application
          apps -= app
          idToApp -= app.id
          actorToApp -= app.driver
          addressToApp -= app.driver.path.address
          if (completedApps.size >= RETAINED_APPLICATIONS) {
            val toRemove = math.max(RETAINED_APPLICATIONS / 10, 1)
            completedApps.take(toRemove).foreach( a => {
              appIdToUI.remove(a.id).foreach { ui => webUi.detachSparkUI(ui) }
              applicationMetricsSystem.removeSource(a.appSource)
            })
            completedApps.trimStart(toRemove)
          }
          //加入已完成的application队列
          completedApps += app // Remember it in our history
          //从当前等待运行的application队列中删除当前APP
          waitingApps -= app
     
          // If application events are logged, use them to rebuild the UI
          rebuildSparkUI(app)
     
          for (exec <- app.executors.values) {
            //停止executor
            exec.worker.removeExecutor(exec)
            exec.worker.actor ! KillExecutor(masterUrl, exec.application.id, exec.id)
            exec.state = ExecutorState.KILLED
          }
          app.markFinished(state)
          if (state != ApplicationState.FINISHED) {
            //从driver中删除application
            app.driver ! ApplicationRemoved(state.toString)
          }
          //从持久化引擎中删除application
          persistenceEngine.removeApplication(app)
          //从新调度任务
          schedule()
     
          // Tell all workers that the application has finished, so they can clean up any app state.
          //告诉所有的worker,APP已经启动完成了,所以他们可以清空APP state
          workers.foreach { w =>
            w.actor ! ApplicationFinished(app.id)
          }
        }
      }

    四、资源调度算法原理剖析与源码分析

    1、剖析

    首先判断,master状态不是ALIVE的话,直接返回,也就是说,standby master是不会进行Application等资源调度的;
    
    首先调度Driver
    只有用yarn-cluster模式提交的时候,才会注册driver,因为standalone和yarn-client模式,都会在本地直接启动driver,而不会来注册driver,就更不可能让master来调度driver了;
    
    Application的调度机制
    首先,Application的调度算法有两种,一种是spreadOutApps,另一种是非spreadOutApps,默认是spreadOutApps;
    
    通过spreadOutApps这种算法,其实会将每个Application,要启动的Executor,都平均分布到各个worker上去;
    
    比如有20个cpu core要分配,有10个worker,那么实际上会循环两遍worker,每次循环,给每个worker分配一个core,最后每个worker分配了两个core;
    
    所以,比如,spark-submit里,配置的是要10个executor,每个要2个core,那么总共是20个core,但这种算法下,其实总共只会启动2个executor,每个有10个core;
    
    非spreadOutApps调度算法,将每一个application,尽可能少的分配到Worker上去,这种算法和spreadOutApps算法正好相反,每个application都尽可能分配到尽量
    少的worker上去;
    
    比如总共有10个worker,每个有10个core,Application总共要分配20个core,
    那么其实只会分配到两个worker上,每个worker都占满10个core,那么其余的application,就只能分配到下一个worker了;

    2、源码

    ###org.apache.spark.deploy.master/Master.scala
    
     private def schedule() {
        // 首先判断,master状态不是ALIVE的话,直接返回
        // 也就是说,standby master是不会进行Application等资源调度的
        if (state != RecoveryState.ALIVE) { return }
     
        // First schedule drivers, they take strict precedence over applications
        // Randomization helps balance drivers
        // Random.shuffle的原理,就是对传入的集合的元素进行随机的打乱
        // 取出了Workers中所有之前注册上来的worker,进行过滤,必须状态位ALIVE的worker
        // 对状态为ALIVE的worker,调用Random.shuffle方法进行随机的打乱
        val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))
        // 拿到worker数量
        val numWorkersAlive = shuffledAliveWorkers.size
        var curPos = 0
     
        // 首先调度Driver
        // 只有用yarn-cluster模式提交的时候,才会注册driver,因为standalone和yarn-client模式,都会在本地直接启动driver,而
        // 不会来注册driver,就更不可能让master来调度driver了
     
        // driver调度机制
        // 遍历waitingDrivers ArrayBuffer
        for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers
          // We assign workers to each waiting driver in a round-robin fashion. For each driver, we
          // start from the last worker that was assigned a driver, and continue onwards until we have
          // explored all alive workers.
          var launched = false
          var numWorkersVisited = 0
          // while的条件 numWorkersVisited小于numWorkersAlive 只要还有活着的worker没有遍历到,就继续遍历
          // 而且当前这个driver还没有被启动,也就是launched为false
          while (numWorkersVisited < numWorkersAlive && !launched) {
            val worker = shuffledAliveWorkers(curPos)
            numWorkersVisited += 1
            // 如果当前这个worker的空闲内存量大于等于driver需要的内存
            // 并且worker的空闲cpu数量大于等于driver所需要的CPU数量
            if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
              // 启动driver
              launchDriver(worker, driver)
              // 将driver从waitingDrivers队列中移除
              waitingDrivers -= driver
              // launched设置为true
              launched = true
            }
            // 将指针指向下一个worker
            curPos = (curPos + 1) % numWorkersAlive
          }
        }
     
        // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
        // in the queue, then the second app, etc.
        // Application的调度机制
        // 首先,Application的调度算法有两种,一种是spreadOutApps,另一种是非spreadOutApps
        // 默认是spreadOutApps
        if (spreadOutApps) {
          // Try to spread out each app among all the nodes, until it has all its cores
          // 首先,遍历waitingApps中的ApplicationInfo,并且过滤出Application还有需要调度的core的Application
          for (app <- waitingApps if app.coresLeft > 0) {
            // 从worker中过滤出状态为ALIVE的Worker
            // 再次过滤出可以被Application使用的Worker,Worker剩余内存数量大于等于Application的每一个Actor需要的内存数量,而且该Worker没有运行过该Application对应的Executor
            // 将Worker按照剩余cpu数量倒序排序
            val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
              .filter(canUse(app, _)).sortBy(_.coresFree).reverse
            val numUsable = usableWorkers.length
            // 创建一个空数组,存储要分配给每个worker的cpu数量
            val assigned = new Array[Int](numUsable) // Number of cores to give on each node
            // 获取到底要分配多少cpu,取app剩余要分配的cpu的数量和worker总共可用cpu数量的最小值
            var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)
            // 通过这种算法,其实会将每个Application,要启动的Executor,都平均分布到各个worker上去
            // 比如有20个cpu core要分配,有10个worker,那么实际上会循环两遍worker,每次循环,给每个worker分配一个core,最后每个worker分配了两个core
            // 所以,比如,spark-submit里,配置的是要10个executor,每个要2个core,那么总共是20个core,但这种算法下,其实总共只会启动2个executor,每个有10个core
     
            // while条件,只要 要分配的cpu,还未分配完,就继续循环
            var pos = 0
            while (toAssign > 0) {
              // 每一个Worker,如果空闲的cpu数量大于已经分配出去的cpu数量,也就是说worker还有可分配的cpu
              if (usableWorkers(pos).coresFree - assigned(pos) > 0) {
                // 将总共要分配的cpu数量-1,因为这里已经决定在这个worker上分配一个cpu了
                toAssign -= 1
                // 给这个worker分配的cpu数量,加1
                assigned(pos) += 1
              }
              // 指针移动到下一个worker
              pos = (pos + 1) % numUsable
            }
            // Now that we've decided how many cores to give on each node, let's actually give them
            // 给每个worker分配完Application要求的cpu core之后 遍历worker
            for (pos <- 0 until numUsable) {
              // 只要判断之前给这个worker分配到了core
              if (assigned(pos) > 0) {
                // 那么就在worker上启动Executor
                // 首先,在Application内部缓存结构中,添加Executor,并且创建ExecutorDesc对象,其中封装了,给这个Executor分配多少个cpu core
                // 这里,spark 1.3.0版本的Executor启动的内部机制
                // 在spark-submit脚本中,可以指定要多少个Executor,每个Executor需要多少个cpu,多少内存
                // 那么基于spreadOutApps机制,实际上,最终,Executor的实际数量,以及每个Executor的cpu,可能与配置是不一样的
                // 因为我们这里是基于总的cpu来分配的,就是说,比如要求3个Executor,每个要三个cpu,有9个worker,每个有1个cpu
                // 那么根据这种算法,会给每个worker分配一个core,然后给每个worker启动一个Executor
                // 最后会启动9个Executor,每个Executor有一个cpu core
                val exec = app.addExecutor(usableWorkers(pos), assigned(pos))
                // 在worker上启动Executor
                launchExecutor(usableWorkers(pos), exec)
                // 将application的状态设置为RUNNING
                app.state = ApplicationState.RUNNING
              }
            }
          }
        } else {
          // Pack each app into as few nodes as possible until we've assigned all its cores
          // 非spreadOutApps调度算法,将每一个application,尽可能少的分配到Worker上去
          // 这种算法和spreadOutApps算法正好相反,每个application都尽可能分配到尽量少的worker上去
          // 比如总共有10个worker,每个有10个core,Application总共要分配20个core
          // 那么其实只会分配到两个worker上,每个worker都占满10个core,那么其余的application,就只能分配到下一个worker了
     
          // 遍历worker,并且状态为ALIVE。还有空闲空间的worker
          for (worker <- workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) {
            // 遍历application,并且是还有需要分配的core的application
            for (app <- waitingApps if app.coresLeft > 0) {
              // 判断,如果当前这个worker可以被application使用
              if (canUse(app, worker)) {
                // 取worker剩余cpu数量,与application要分配的cpu数量的最小值
                val coresToUse = math.min(worker.coresFree, app.coresLeft)
                // 如果worker剩余cpu为0,那么就不分配了
                if (coresToUse > 0) {
                  // 给application添加一个executor
                  val exec = app.addExecutor(worker, coresToUse)
                  // 在worker上启动executor
                  launchExecutor(worker, exec)
                  // 将application的状态设置为RUNNING
                  app.state = ApplicationState.RUNNING
                }
              }
            }
          }
        }
      }
    
    
    
    
    
    ###launchExecutor()方法
    
      def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc) {
        logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
        // 将Executor加入worker内部的缓存
        worker.addExecutor(exec)
        // 向worker的actor发送LaunchExecutor消息
        worker.actor ! LaunchExecutor(masterUrl,
          exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory)
        // 向Executor对应的application对应的driver,发送ExecutorAdded消息
        exec.application.driver ! ExecutorAdded(
          exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)
      }
    
    
    
    
    
    canUse()方法
    
      def canUse(app: ApplicationInfo, worker: WorkerInfo): Boolean = {
        worker.memoryFree >= app.desc.memoryPerSlave && !worker.hasExecutor(app)
      }
  • 相关阅读:
    从干将莫邪的故事说起--java比较操作注意要点
    我又不是你的谁--java instanceof操作符用法揭秘
    色即是空,空即是色---java有关null的几件小事
    大头儿子和小头爸爸的战斗--java字符和字符串
    你的环境有问题吧?--byte数组转字符串的疑惑
    两小无猜的爱恨情仇--java =+和+=揭秘
    java程序猿如何练习java版的易筋经?
    孙悟空的七十二变是那般?--java类型的七十二变揭秘
    leetcode 341. Flatten Nested List Iterator
    leetcode 44. Wildcard Matching
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/11206265.html
Copyright © 2011-2022 走看看