zoukankan      html  css  js  c++  java
  • 40、JSON数据源综合案例实战

    一、JSON数据源综合案例实战

    1、概述

    Spark SQL可以自动推断JSON文件的元数据,并且加载其数据,创建一个DataFrame。可以使用SQLContext.read.json()方法,针对一个元素类型为String的RDD,或者是一个JSON文件。
    
    但是要注意的是,这里使用的JSON文件与传统意义上的JSON文件是不一样的。每行都必须,也只能包含一个,单独的,自包含的,有效的JSON对象。不能让一个JSON对象分散在多行。否则会报错。
    
    ###
    综合性复杂案例:查询成绩为80分以上的学生的基本信息与成绩信息


    students.json

    {"name":"Leo", "score":85}
    
    {"name":"Marry", "score":99}
    
    {"name":"Jack", "score":74}


    2、java案例实现

    package cn.spark.study.sql;
    
    
    import java.util.ArrayList;
    import java.util.List;
    
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.PairFunction;
    import org.apache.spark.sql.DataFrame;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SQLContext;
    import org.apache.spark.sql.types.DataTypes;
    import org.apache.spark.sql.types.StructField;
    import org.apache.spark.sql.types.StructType;
    
    import scala.Tuple2;
    
    /**
     * JSON数据源
     * @author Administrator
     *
     */
    
    public class JSONDataSource {
    
        public static void main(String[] args) {
            SparkConf conf = new SparkConf()
                    .setAppName("JSONDataSource");  
            JavaSparkContext sc = new JavaSparkContext(conf);
            SQLContext sqlContext = new SQLContext(sc);
            
            // 针对json文件,创建DataFrame(针对json文件创建DataFrame)
            DataFrame studentScoresDF = sqlContext.read().json(
                    "hdfs://spark1:9000/spark-study/students.json");  
            
            // 针对学生成绩信息的DataFrame,注册临时表,查询分数大于80分的学生的姓名
            // (注册临时表,针对临时表执行sql语句)
            studentScoresDF.registerTempTable("student_scores");
            DataFrame goodStudentScoresDF = sqlContext.sql(
                    "select name,score from student_scores where score>=80");
            
            // (将DataFrame转换为rdd,执行transformation操作)
            List<String> goodStudentNames = goodStudentScoresDF.javaRDD().map(
                    
                    new Function<Row, String>() {
                        
                        private static final long serialVersionUID = 1L;
            
                        @Override
                        public String call(Row row) throws Exception {
                            return row.getString(0);
                        }
                        
                    }).collect();
            
            // 然后针对JavaRDD<String>,创建DataFrame
            // (针对包含json串的JavaRDD,创建DataFrame)
            List<String> studentInfoJSONs = new ArrayList<String>();
            studentInfoJSONs.add("{"name":"Leo", "age":18}");  
            studentInfoJSONs.add("{"name":"Marry", "age":17}");  
            studentInfoJSONs.add("{"name":"Jack", "age":19}");
            JavaRDD<String> studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs);
            DataFrame studentInfosDF = sqlContext.read().json(studentInfoJSONsRDD);
            
            // 针对学生基本信息DataFrame,注册临时表,然后查询分数大于80分的学生的基本信息
            studentInfosDF.registerTempTable("student_infos");  
            
            String sql = "select name,age from student_infos where name in (";
            for(int i = 0; i < goodStudentNames.size(); i++) {
                sql += "'" + goodStudentNames.get(i) + "'";
                if(i < goodStudentNames.size() - 1) {
                    sql += ",";
                }
            }
            sql += ")";
            
            DataFrame goodStudentInfosDF = sqlContext.sql(sql);
            
            // 然后将两份数据的DataFrame,转换为JavaPairRDD,执行join transformation
            // (将DataFrame转换为JavaRDD,再map为JavaPairRDD,然后进行join)
            JavaPairRDD<String, Tuple2<Integer, Integer>> goodStudentsRDD = 
                    
                    goodStudentScoresDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
    
                        private static final long serialVersionUID = 1L;
            
                        @Override
                        public Tuple2<String, Integer> call(Row row) throws Exception {
                            return new Tuple2<String, Integer>(row.getString(0), 
                                    Integer.valueOf(String.valueOf(row.getLong(1))));  
                        }
                        
                    }).join(goodStudentInfosDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
            
                        private static final long serialVersionUID = 1L;
            
                        @Override
                        public Tuple2<String, Integer> call(Row row) throws Exception {
                            return new Tuple2<String, Integer>(row.getString(0),
                                    Integer.valueOf(String.valueOf(row.getLong(1))));   
                        }
                        
                    }));
            
            // 然后将封装在RDD中的好学生的全部信息,转换为一个JavaRDD<Row>的格式
            // (将JavaRDD,转换为DataFrame)
            JavaRDD<Row> goodStudentRowsRDD = goodStudentsRDD.map(
                    
                    new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public Row call(
                                Tuple2<String, Tuple2<Integer, Integer>> tuple)
                                throws Exception {
                            return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
                        }
                        
                    });
            
            // 创建一份元数据,将JavaRDD<Row>转换为DataFrame
            List<StructField> structFields = new ArrayList<StructField>();
            structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); 
            structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));  
            structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));  
            StructType structType = DataTypes.createStructType(structFields);
            
            DataFrame goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType);
            
            // 将好学生的全部信息保存到一个json文件中去
            // (将DataFrame中的数据保存到外部的json文件中去)
            goodStudentsDF.write().format("json").save("hdfs://spark1:9000/spark-study/good-students");  
        }
        
    }
    
    
    
    
    
    
    
    ####
    students.json 
    {"name":"Leo", "score":85}
    {"name":"Marry", "score":99}
    {"name":"Jack", "score":74}


    3、scala案例实现

    package cn.spark.study.sql
    
    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    import org.apache.spark.sql.SQLContext
    import org.apache.spark.sql.types.StructType
    import org.apache.spark.sql.types.StructField
    import org.apache.spark.sql.types.StringType
    import org.apache.spark.sql.types.IntegerType
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.types.LongType
    
    
    /**
     * @author Administrator
     */
    object JSONDataSource {
      
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
            .setAppName("JSONDataSource")  
        val sc = new SparkContext(conf)
        val sqlContext = new SQLContext(sc)
        
        // 创建学生成绩DataFrame
        val studentScoresDF = sqlContext.read.json("hdfs://spark1:9000/spark-study/students.json")
        
        // 查询出分数大于80分的学生成绩信息,以及学生姓名
        studentScoresDF.registerTempTable("student_scores")
        val goodStudentScoresDF = sqlContext.sql("select name,score from student_scores where score>=80")
        val goodStudentNames = goodStudentScoresDF.rdd.map { row => row(0) }.collect()  
        
        // 创建学生基本信息DataFrame
        val studentInfoJSONs = Array("{"name":"Leo", "age":18}", 
            "{"name":"Marry", "age":17}",
            "{"name":"Jack", "age":19}")
        val studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs, 3);
        val studentInfosDF = sqlContext.read.json(studentInfoJSONsRDD)  
        
        // 查询分数大于80分的学生的基本信息
        studentInfosDF.registerTempTable("student_infos")
        
        var sql = "select name,age from student_infos where name in ("
        for(i <- 0 until goodStudentNames.length) {
          sql += "'" + goodStudentNames(i) + "'"
          if(i < goodStudentNames.length - 1) {
            sql += ","
          }
        }
        sql += ")"  
        
        val goodStudentInfosDF = sqlContext.sql(sql)
        
        // 将分数大于80分的学生的成绩信息与基本信息进行join
        val goodStudentsRDD = 
            goodStudentScoresDF.rdd.map { row => (row.getAs[String]("name"), row.getAs[Long]("score")) }
                .join(goodStudentInfosDF.rdd.map { row => (row.getAs[String]("name"), row.getAs[Long]("age")) })  
      
        // 将rdd转换为dataframe
        val goodStudentRowsRDD = goodStudentsRDD.map(
            info => Row(info._1, info._2._1.toInt, info._2._2.toInt))  
                
        val structType = StructType(Array(
            StructField("name", StringType, true),
            StructField("score", IntegerType, true),
            StructField("age", IntegerType, true)))  
            
        val goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType)  
        
        // 将dataframe中的数据保存到json中
        goodStudentsDF.write.format("json").save("hdfs://spark1:9000/spark-study/good-students-scala")  
      }
      
    }
  • 相关阅读:
    <![CDATA[文本内容]]>
    Java对于表达式中的自动类型提升
    oracle循环语句
    Recastnavigation 创建 off-mesh link 的潜规则
    CritterAI 翻译 Configuration Parameters
    ndk-build 修改输出so位置 (change ndk-build output so lib file path )
    C# List<> Find相关接口学习
    C++ sizeof(struct) 的注意
    Unity使用Resources读取Resources路径下的二进制文件(Binary Data)必须使用 .bytes扩展名
    C++ ifstream ofstream 注意事项
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/11286837.html
Copyright © 2011-2022 走看看