zoukankan      html  css  js  c++  java
  • 48、tensorflow入门二,线性模型的拟合

    import tensorflow as tf
    import numpy as np
    #生成2维的100个0-1的随机数 x_data
    = np.float32(np.random.rand(2,100))
    计算内积,x_data一共100个值,每个值都是2维的向量,用[0.1,0.2]和每一个向量计算数量积,然后加起来
    x_data=

    [[ 0.27559635 0.35930911 0.77030689 0.71818703 0.49122271 0.43190494
    0.644674 0.32078174 0.64300877 0.81156862 0.30409896 0.56623858
    0.97026539 0.60468578 0.34658566 0.86189109 0.5117926 0.46588144
    0.27591956 0.49946061 0.47744861 0.80954593 0.10624354 0.80820572
    0.24388497 0.75275064 0.11153043 0.01847375 0.70894343 0.86511648
    0.05999189 0.94242656 0.35399687 0.53131646 0.80690706 0.28856653
    0.2685678 0.86655128 0.49340782 0.84330899 0.26634833 0.94808429
    0.32813659 0.60548925 0.37914801 0.93819922 0.16300483 0.28346273
    0.25481561 0.59326059 0.64435166 0.71002674 0.47835174 0.16478723
    0.83618289 0.89197201 0.77212745 0.83254766 0.1176443 0.45999372
    0.17508474 0.99125117 0.19204263 0.88548642 0.16025347 0.58622926
    0.14167576 0.6784007 0.77483946 0.90998834 0.79064935 0.76124579
    0.11255023 0.63665706 0.84133714 0.01388079 0.7478959 0.34365693
    0.66228282 0.56429321 0.97419363 0.46427366 0.71639329 0.67420006
    0.72603422 0.35240087 0.43481046 0.04478104 0.83910578 0.03852031
    0.63502115 0.54327303 0.05116724 0.75744271 0.23107423 0.25379685
    0.1543453 0.65174055 0.60880935 0.41448417]
    [ 0.53852242 0.24170624 0.51843584 0.41295227 0.22256 0.05581184
    0.42046902 0.49984431 0.83284378 0.44403863 0.43289256 0.04277489
    0.97858369 0.32724616 0.69393569 0.80431139 0.20591183 0.10109164
    0.07850602 0.61202133 0.04476574 0.99151891 0.1714984 0.83303201
    0.1769124 0.97038633 0.71856993 0.97560126 0.80447757 0.48544171
    0.95302963 0.21392477 0.72407377 0.32749009 0.87037027 0.23632777
    0.09344739 0.49172315 0.27751547 0.3205907 0.42732051 0.0938397
    0.65851027 0.75118226 0.30484736 0.69336241 0.96847987 0.08743072
    0.5060789 0.128803 0.12509818 0.77400607 0.99729323 0.25656971
    0.28877217 0.26310787 0.22661451 0.38361222 0.64689898 0.26246113
    0.41836309 0.96913052 0.34863174 0.26865834 0.96321774 0.02932074
    0.51096094 0.93037766 0.3862699 0.77660888 0.50103205 0.35242727
    0.96469277 0.71796703 0.90261179 0.9502635 0.2554118 0.41087386
    0.13807607 0.10848427 0.27238116 0.81126028 0.35296583 0.5478636
    0.35726911 0.54948765 0.3683508 0.57419771 0.28177765 0.80673724
    0.14792147 0.5277251 0.17725706 0.5937981 0.86571193 0.09969555
    0.92383957 0.95939624 0.76108253 0.30095646]]

    y_data = 

    [ 0.43526412 0.38427216 0.48071786 0.45440916 0.39363427 0.35435286
    0.4485612 0.43204704 0.53086963 0.46996459 0.41698841 0.36517884
    0.59274328 0.42591781 0.4734457 0.54705139 0.39236163 0.36680647
    0.34329316 0.47235033 0.35669801 0.57925838 0.34492403 0.54742697
    0.35977098 0.56935233 0.45486703 0.49696763 0.53178986 0.48359999
    0.49660512 0.43702761 0.48021444 0.41862966 0.55476476 0.37612221
    0.34554626 0.48499976 0.40484388 0.44844904 0.41209894 0.41357637
    0.46451571 0.51078538 0.39888427 0.53249241 0.50999646 0.34583242
    0.42669734 0.38508666 0.3894548 0.52580389 0.54729382 0.36779267
    0.44137272 0.44181877 0.42253565 0.45997721 0.44114423 0.3984916
    0.40118109 0.59295122 0.38893061 0.44228031 0.50866889 0.36448708
    0.41635976 0.5539156 0.45473793 0.54632061 0.47927135 0.44661003
    0.50419358 0.50725911 0.56465607 0.49144078 0.42587195 0.41654046
    0.3938435 0.37812617 0.45189559 0.50867942 0.4422325 0.47699273
    0.44405724 0.44513762 0.41715121 0.41931765 0.44026611 0.46519948
    0.39308641 0.45987232 0.34056814 0.49450389 0.49624981 0.34531879
    0.50020244 0.5570533 0.51309744 0.40163971]

    y_data = np.dot([0.100,0.200],x_data) + 0.300
    b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1,2],-1.0,1.0)) y = tf.matmul(W,x_data) + b loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in np.arange(0,201): sess.run(train) if step % 20 == 0: print(step,sess.run(W),sess.run(b))


    结果如下所示

    >>> import testTensorflow
    0 [[ 0.61865866 0.54848659]] [-0.35512698]
    20 [[ 0.27226886 0.31722128]] [ 0.14856057]
    40 [[ 0.15020847 0.23340638]] [ 0.25623968]
    60 [[ 0.11460328 0.20955895]] [ 0.28735051]
    80 [[ 0.10424114 0.20274341]] [ 0.29634258]
    100 [[ 0.10123044 0.20078911]] [ 0.2989423]
    120 [[ 0.10035671 0.20022736]] [ 0.29969406]
    140 [[ 0.10010336 0.20006558]] [ 0.2999115]
    160 [[ 0.10002995 0.20001893]] [ 0.29997438]
    180 [[ 0.10000868 0.20000547]] [ 0.29999259]
    200 [[ 0.10000249 0.20000155]] [ 0.29999787]
    >>>

  • 相关阅读:
    论文阅读笔记(七十二)【ICMR2020】:Compact Network Training for Person ReID
    论文阅读笔记(七十一)【CVPR2018】:Harmonious Attention Network for Person Re-Identification
    论文阅读笔记(七十)【CVPR2021】:Combined Depth Space based Architecture Search For Person Re-identification
    论文阅读笔记(六十九)【CVPR2021】:BiCnet-TKS: Learning Efficient Spatial-Temporal Representation for Video Person Re-Identification
    论文阅读笔记(六十八):图文跨模态行人检索(3篇)
    (一万小时计划)二月二日总结
    (一万小时计划)一月二十三日总结
    (一万小时计划)一月二十日总结
    (一万小时计划)一月二日总结
    (一万小时计划)十二月二十二日总结
  • 原文地址:https://www.cnblogs.com/weizhen/p/6286306.html
Copyright © 2011-2022 走看看