zoukankan      html  css  js  c++  java
  • 94、tensorflow实现语音识别0,1,2,3,4,5,6,7,8,9

    '''
    Created on 2017年7月23日
    
    @author: weizhen
    '''
    #导入库
    from __future__ import division,print_function,absolute_import
    import tflearn
    import speech_data
    import tensorflow as tf
    #定义参数
    #learning rate是在更新权重的时候用,太高可用很快
    #但是loss大,太低较准但是很慢
    learning_rate=0.0001
    training_iters=300000#STEPS
    batch_size=64
    
    width=20 #mfcc features
    height=80 #(max) length of utterance
    classes = 10  #digits
    
    #用speech_data.mfcc_batch_generator获取语音数据并处理成批次,
    #然后创建training和testing数据
    batch=word_batch=speech_data.mfcc_batch_generator(batch_size)
    X,Y=next(batch)
    trainX,trainY=X,Y
    testX,testY=X,Y #overfit for now
    
    #4.建立模型
    #speech recognition 是个many to many的问题
    #所以用Recurrent NN
    #通常的RNN,它的输出结果是受整个网络的影响的
    #而LSTM比RNN好的地方是,它能记住并且控制影响的点,
    #所以这里我们用LSTM
    #每一层到底需要多少个神经元是没有规定的,太少了的话预测效果不好
    #太多了会overfitting,这里普遍取128
    #为了减轻过拟合的影响,我们用dropout,它可以随机地关闭一些神经元,
    #这样网络就被迫选择其他路径,进而生成想对generalized模型
    #接下来建立一个fully connected的层
    #它可以使前一层的所有节点都连接过来,输出10类
    #因为数字是0-9,激活函数用softmax,它可以把数字变换成概率
    #最后用个regression层来输出唯一的类别,用adam优化器来使
    #cross entropy损失达到最小
    
    #Network building
    net=tflearn.input_data([None,width,height])
    net=tflearn.lstm(net,128,dropout=0.8)
    net=tflearn.fully_connected(net,classes,activation='softmax')
    net=tflearn.regression(net,optimizer='adam',learning_rate=learning_rate,loss='categorical_crossentropy')
    
    
    #5.训练模型并预测
    #然后用tflearn.DNN函数来初始化一下模型,接下来就可以训练并预测,最好再保存训练好的模型
    #Traing
    ### add this "fix" for tensorflow version erros
    col=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
    for x in col:
        tf.add_to_collection(tf.GraphKeys.VARIABLES,x)
    
    model=tflearn.DNN(net,tensorboard_verbose=0)
    
    while 1:  #training_iters
        model.fit(trainX, trainY, n_epoch=10, validation_set=(testX,testY), show_metric=True, batch_size=batch_size)
        _y=model.predict(X)
    model.save("tflearn.lstm.model")
    print(_y)

    下面是训练的结果

    Training Step: 3097  | total loss: 1.51596 | time: 1.059s
    
    | Adam | epoch: 3097 | loss: 1.51596 - acc: 0.6324 | val_loss: 0.36655 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3098  | total loss: 1.64602 | time: 1.050s
    
    | Adam | epoch: 3098 | loss: 1.64602 - acc: 0.5801 | val_loss: 0.36642 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3099  | total loss: 1.54328 | time: 1.052s
    
    | Adam | epoch: 3099 | loss: 1.54328 - acc: 0.6206 | val_loss: 0.36673 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3100  | total loss: 1.65763 | time: 1.044s
    
    | Adam | epoch: 3100 | loss: 1.65763 - acc: 0.5741 | val_loss: 0.36645 - val_acc: 1.0000 -- iter: 64/64
    --
    ---------------------------------
    Run id: E1W1VX
    Log directory: /tmp/tflearn_logs/
    ---------------------------------
    Training samples: 64
    Validation samples: 64
    --
    Training Step: 3101  | total loss: 1.56009 | time: 1.328s
    
    | Adam | epoch: 3101 | loss: 1.56009 - acc: 0.6167 | val_loss: 0.36696 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3102  | total loss: 1.68916 | time: 1.034s
    
    | Adam | epoch: 3102 | loss: 1.68916 - acc: 0.5660 | val_loss: 0.36689 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3103  | total loss: 1.58796 | time: 1.044s
    
    | Adam | epoch: 3103 | loss: 1.58796 - acc: 0.6078 | val_loss: 0.36627 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3104  | total loss: 1.49236 | time: 1.055s
    
    | Adam | epoch: 3104 | loss: 1.49236 - acc: 0.6470 | val_loss: 0.36599 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3105  | total loss: 1.60916 | time: 1.028s
    
    | Adam | epoch: 3105 | loss: 1.60916 - acc: 0.5995 | val_loss: 0.36535 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3106  | total loss: 1.51083 | time: 1.049s
    
    | Adam | epoch: 3106 | loss: 1.51083 - acc: 0.6396 | val_loss: 0.36534 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3107  | total loss: 1.63413 | time: 1.066s
    
    | Adam | epoch: 3107 | loss: 1.63413 - acc: 0.5865 | val_loss: 0.36566 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3108  | total loss: 1.74167 | time: 1.042s
    
    | Adam | epoch: 3108 | loss: 1.74167 - acc: 0.5373 | val_loss: 0.36556 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3109  | total loss: 1.63324 | time: 1.051s
    
    | Adam | epoch: 3109 | loss: 1.63324 - acc: 0.5835 | val_loss: 0.36557 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3110  | total loss: 1.75479 | time: 1.042s
    
    | Adam | epoch: 3110 | loss: 1.75479 - acc: 0.5377 | val_loss: 0.36524 - val_acc: 1.0000 -- iter: 64/64
    --
    ---------------------------------
    Run id: 93CFSE
    Log directory: /tmp/tflearn_logs/
    ---------------------------------
    Training samples: 64
    Validation samples: 64
    --
    Training Step: 3111  | total loss: 1.64290 | time: 1.320s
    
    | Adam | epoch: 3111 | loss: 1.64290 - acc: 0.5839 | val_loss: 0.36560 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3112  | total loss: 1.76515 | time: 1.029s
    
    | Adam | epoch: 3112 | loss: 1.76515 - acc: 0.5349 | val_loss: 0.36552 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3113  | total loss: 1.65166 | time: 1.050s
    
    | Adam | epoch: 3113 | loss: 1.65166 - acc: 0.5814 | val_loss: 0.36609 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3114  | total loss: 1.76346 | time: 1.062s
    
    | Adam | epoch: 3114 | loss: 1.76346 - acc: 0.5342 | val_loss: 0.36636 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3115  | total loss: 1.65255 | time: 1.042s
    
    | Adam | epoch: 3115 | loss: 1.65255 - acc: 0.5808 | val_loss: 0.36636 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3116  | total loss: 1.55663 | time: 1.042s
    
    | Adam | epoch: 3116 | loss: 1.55663 - acc: 0.6227 | val_loss: 0.36689 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3117  | total loss: 1.67928 | time: 1.051s
    
    | Adam | epoch: 3117 | loss: 1.67928 - acc: 0.5729 | val_loss: 0.36726 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3118  | total loss: 1.78375 | time: 1.043s
    
    | Adam | epoch: 3118 | loss: 1.78375 - acc: 0.5266 | val_loss: 0.36714 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3119  | total loss: 1.67364 | time: 1.041s
    
    | Adam | epoch: 3119 | loss: 1.67364 - acc: 0.5724 | val_loss: 0.36725 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3120  | total loss: 1.79457 | time: 1.044s
    
    | Adam | epoch: 3120 | loss: 1.79457 - acc: 0.5276 | val_loss: 0.36694 - val_acc: 1.0000 -- iter: 64/64
    --
    ---------------------------------
    Run id: YE812Z
    Log directory: /tmp/tflearn_logs/
    ---------------------------------
    Training samples: 64
    Validation samples: 64
    --
    Training Step: 3121  | total loss: 1.68830 | time: 1.351s
    
    | Adam | epoch: 3121 | loss: 1.68830 - acc: 0.5686 | val_loss: 0.36691 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3122  | total loss: 1.79857 | time: 1.022s
    
    | Adam | epoch: 3122 | loss: 1.79857 - acc: 0.5227 | val_loss: 0.36642 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3123  | total loss: 1.68557 | time: 1.071s
    
    | Adam | epoch: 3123 | loss: 1.68557 - acc: 0.5673 | val_loss: 0.36519 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3124  | total loss: 1.58528 | time: 1.042s
    
    | Adam | epoch: 3124 | loss: 1.58528 - acc: 0.6106 | val_loss: 0.36366 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3125  | total loss: 1.49228 | time: 1.042s
    
    | Adam | epoch: 3125 | loss: 1.49228 - acc: 0.6495 | val_loss: 0.36180 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3126  | total loss: 1.41012 | time: 1.052s
    
    | Adam | epoch: 3126 | loss: 1.41012 - acc: 0.6846 | val_loss: 0.36061 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3127  | total loss: 1.55866 | time: 1.023s
    
    | Adam | epoch: 3127 | loss: 1.55866 - acc: 0.6286 | val_loss: 0.35908 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3128  | total loss: 1.46943 | time: 1.044s
    
    | Adam | epoch: 3128 | loss: 1.46943 - acc: 0.6657 | val_loss: 0.35735 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3129  | total loss: 1.39050 | time: 1.042s
    
    | Adam | epoch: 3129 | loss: 1.39050 - acc: 0.6992 | val_loss: 0.35632 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3130  | total loss: 1.54006 | time: 1.043s
    
    | Adam | epoch: 3130 | loss: 1.54006 - acc: 0.6371 | val_loss: 0.35513 - val_acc: 1.0000 -- iter: 64/64
    --
    ---------------------------------
    Run id: YGRXY5
    Log directory: /tmp/tflearn_logs/
    ---------------------------------
    Training samples: 64
    Validation samples: 64
    --
    Training Step: 3131  | total loss: 1.45402 | time: 1.336s
    
    | Adam | epoch: 3131 | loss: 1.45402 - acc: 0.6702 | val_loss: 0.35442 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3132  | total loss: 1.59202 | time: 1.029s
    
    | Adam | epoch: 3132 | loss: 1.59202 - acc: 0.6110 | val_loss: 0.35325 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3133  | total loss: 1.50035 | time: 1.070s
    
    | Adam | epoch: 3133 | loss: 1.50035 - acc: 0.6499 | val_loss: 0.35195 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3134  | total loss: 1.41417 | time: 1.042s
    
    | Adam | epoch: 3134 | loss: 1.41417 - acc: 0.6849 | val_loss: 0.35042 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3135  | total loss: 1.34060 | time: 1.037s
    
    | Adam | epoch: 3135 | loss: 1.34060 - acc: 0.7149 | val_loss: 0.34937 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3136  | total loss: 1.47476 | time: 1.039s
    
    | Adam | epoch: 3136 | loss: 1.47476 - acc: 0.6574 | val_loss: 0.34826 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3137  | total loss: 1.38535 | time: 1.053s
    
    | Adam | epoch: 3137 | loss: 1.38535 - acc: 0.6917 | val_loss: 0.34739 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3138  | total loss: 1.51673 | time: 1.063s
    
    | Adam | epoch: 3138 | loss: 1.51673 - acc: 0.6413 | val_loss: 0.34637 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3139  | total loss: 1.42892 | time: 1.042s
    
    | Adam | epoch: 3139 | loss: 1.42892 - acc: 0.6756 | val_loss: 0.34570 - val_acc: 1.0000 -- iter: 64/64
    --
    Training Step: 3140  | total loss: 1.58217 | time: 1.052s
    
    | Adam | epoch: 3140 | loss: 1.58217 - acc: 0.6112 | val_loss: 0.34494 - val_acc: 1.0000 -- iter: 64/64
    --
    ---------------------------------

    这里边有一个死循环,具体怎么回事我也不太清楚。

    下边是可视化训练,展示训练的图像

  • 相关阅读:
    Linux_磁盘管理
    Linux_安装软件包
    Linux_文件打包,压缩,解压
    Linux_系统管理命令(工作中经常使用到的)
    The method queryForMap(String, Object...) from the type JdbcTemplate refers to the missing type DataAccessException
    org.springframework.beans.factory.BeanDefinitionStoreException错误
    Java中动态代理工作流程
    Spring之<context:property-placeholder location="classpath:... "/>标签路径问题
    数据库连接问题之:Caused by: java.sql.SQLException: Connections could not be acquired from the underlying database!
    java环境变量的配置
  • 原文地址:https://www.cnblogs.com/weizhen/p/7224168.html
Copyright © 2011-2022 走看看