zoukankan      html  css  js  c++  java
  • 如何用kaldi做孤立词识别二

    基本模型没有变化,主要是调参,配置:

    %WER     65%  下降到了     15%

    后面再继续优化...

    Graph compilation finish!
    steps/decode.sh --nj 1 --cmd utils/run.pl exp/mono0/graph_tgpr data/waves_test exp/mono0/decode_waves_test
    decode.sh: feature type is delta
    steps/diagnostic/analyze_lats.sh --cmd utils/run.pl exp/mono0/graph_tgpr exp/mono0/decode_waves_test
    steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_alignments.log
    Overall, lattice depth (10,50,90-percentile)=(1,3,9) and mean=3.9
    steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_lattice_depth_stats.log
    score.sh works!
    exp/mono0/decode_waves_test
    %WER 15.00 [ 3 / 20, 2 ins, 1 del, 0 sub ] exp/mono0/decode_waves_test/wer_11

    200_001_001 espresso
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.08665 over 118 frames.
    200_001_002 lungo
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.24863 over 87 frames.
    200_001_003 extralungo
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.80181 over 121 frames.
    200_001_004 Cappuccino no
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.10243 over 83 frames.
    200_001_005 lattemakiato
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.09944 over 120 frames.
    200_001_006 bluemountain
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.92891 over 116 frames.
    200_001_007 ok
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.0784 over 94 frames.
    200_001_008 yes
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.52974 over 46 frames.
    200_001_009 no
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.06832 over 68 frames.
    200_001_010 thankyou
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.38154 over 73 frames.
    200_002_001 espresso
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.87652 over 99 frames.
    200_002_002 lungo
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.98032 over 85 frames.
    200_002_003 extralungo
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.24635 over 123 frames.
    200_002_004 Cappuccino no
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.10968 over 75 frames.
    200_002_005 lattemakiato
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.68037 over 117 frames.
    200_002_006 bluemountain
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.34412 over 110 frames.
    200_002_007
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.84015 over 64 frames.
    200_002_008 yes
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.53148 over 77 frames.
    200_002_009 no
    LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -9.62339 over 51 frames.
    200_002_010 thankyou

  • 相关阅读:
    java使用Websocket获取HttpSession出现的问题与解决
    java 静态导入 小结
    【编程思想笔记】内部类的初始化
    【搬运】Tea算法Java实现工具类
    OBS studio最新版配置鉴权推流
    debian 9 双显卡安装NVIDIA显卡驱动
    【学习笔记】Java finalize()的使用
    【学习笔记】js下拉刷新、上拉加载 mescroll框架的使用
    [随笔] 简单操作解决Google chrome颜色显示不正常的情况
    【自制工具类】struts返回json数据包装格式类
  • 原文地址:https://www.cnblogs.com/welen/p/7611627.html
Copyright © 2011-2022 走看看