zoukankan      html  css  js  c++  java
  • tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。

    x = tf.placeholder(tf.float32, [None, 784])

    x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point numbers, with a shape [None, 784]. (Here None means that a dimension can be of any length.)

    TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

    在TensorFlow系统中,张量的维数来被描述为.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

        t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

    你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

    数学实例Python 例子
    0 纯量 (只有大小) s = 483
    1 向量(大小和方向) v = [1.1, 2.2, 3.3]
    2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
    n n阶 (自己想想看) ....

    形状

    TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

    形状维数实例
    0 [ ] 0-D 一个 0维张量. 一个纯量.
    1 [D0] 1-D 一个1维张量的形式[5].
    2 [D0, D1] 2-D 一个2维张量的形式[3, 4].
    3 [D0, D1, D2] 3-D 一个3维张量的形式 [1, 4, 3].
    n [D0, D1, ... Dn] n-D 一个n维张量的形式 [D0, D1, ... Dn].

    形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape class.

    数据类型

    除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

    数据类型Python 类型描述
    DT_FLOAT tf.float32 32 位浮点数.
    DT_DOUBLE tf.float64 64 位浮点数.
    DT_INT64 tf.int64 64 位有符号整型.
    DT_INT32 tf.int32 32 位有符号整型.
    DT_INT16 tf.int16 16 位有符号整型.
    DT_INT8 tf.int8 8 位有符号整型.
    DT_UINT8 tf.uint8 8 位无符号整型.
    DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
    DT_BOOL tf.bool 布尔型.
    DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
    DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
    DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
    DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.
  • 相关阅读:
    Linq to OBJECT延时标准查询操作符
    LINQ to XML
    动态Linq(结合反射)
    HDU 1242 dFS 找目标最短路
    HDu1241 DFS搜索
    hdu 1224 最长路
    BOJ 2773 第K个与m互质的数
    ZOJ 2562 反素数
    2016 ccpc 杭州赛区的总结
    bfs UESTC 381 Knight and Rook
  • 原文地址:https://www.cnblogs.com/welhzh/p/6554872.html
Copyright © 2011-2022 走看看