from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,export_graphviz
import jieba
import pandas as pd
调用方法来实现:
def decision():
#获取数据
taitan=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
#获取特征值
x=taitan[['pclass','age','sex']]
#获取目标值
y=taitan[['survived']]
#缺失值的处理 用年龄的平均值填补
x['age'].fillna(x['age'].mean(),inplace=True)
#分割数据集到训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
#对数据进行one_hot编码
dict=DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient='records'))
print(dict.get_feature_names())
x_test = dict.fit_transform(x_test.to_dict(orient='records'))
#实例化一个决策树
dec=DecisionTreeClassifier()
dec.fit(x_train,y_train)
print("预测准确率:",dec.score(x_test,y_test))
export_graphviz(dec,out_file='./tree.dot',feature_names=['年龄','pclass=1st', 'pclass=2nd', 'pclass=3rd', '女人', '男人'])
# print(x_train)
if __name__ == '__main__':
decision()
如果想查看决策树的结构,可以使用可视化工具将其转化为图片 graphviz
win安装直接exe就行了,安装完成,需要将bin目录配置到path环境变量中去。即可执行dot命令。
dot -Tpng tree.dot -o tree.png #将dot文件转为png格式的图片 必须进入到指定目录下去操作